• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

面向动态场景的WiFi呼吸监测范围扩大方法

林逸群, 邱杰凡, 张锦鸿, 周克众, 方凯, 刘晓莹, 池凯凯

林逸群, 邱杰凡, 张锦鸿, 周克众, 方凯, 刘晓莹, 池凯凯. 面向动态场景的WiFi呼吸监测范围扩大方法[J]. 计算机研究与发展. DOI: 10.7544/issn1000-1239.202330884
引用本文: 林逸群, 邱杰凡, 张锦鸿, 周克众, 方凯, 刘晓莹, 池凯凯. 面向动态场景的WiFi呼吸监测范围扩大方法[J]. 计算机研究与发展. DOI: 10.7544/issn1000-1239.202330884
Lin Yiqun, Qiu Jiefan, Zhang Jinhong, Zhou Kezhong, Fang Kai, Liu Xiaoying, Chi Kaikai. Range Expansion Method for WiFi-Based Respiration Monitoring Under Dynamic Scenes[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202330884
Citation: Lin Yiqun, Qiu Jiefan, Zhang Jinhong, Zhou Kezhong, Fang Kai, Liu Xiaoying, Chi Kaikai. Range Expansion Method for WiFi-Based Respiration Monitoring Under Dynamic Scenes[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202330884
林逸群, 邱杰凡, 张锦鸿, 周克众, 方凯, 刘晓莹, 池凯凯. 面向动态场景的WiFi呼吸监测范围扩大方法[J]. 计算机研究与发展. CSTR: 32373.14.issn1000-1239.202330884
引用本文: 林逸群, 邱杰凡, 张锦鸿, 周克众, 方凯, 刘晓莹, 池凯凯. 面向动态场景的WiFi呼吸监测范围扩大方法[J]. 计算机研究与发展. CSTR: 32373.14.issn1000-1239.202330884
Lin Yiqun, Qiu Jiefan, Zhang Jinhong, Zhou Kezhong, Fang Kai, Liu Xiaoying, Chi Kaikai. Range Expansion Method for WiFi-Based Respiration Monitoring Under Dynamic Scenes[J]. Journal of Computer Research and Development. CSTR: 32373.14.issn1000-1239.202330884
Citation: Lin Yiqun, Qiu Jiefan, Zhang Jinhong, Zhou Kezhong, Fang Kai, Liu Xiaoying, Chi Kaikai. Range Expansion Method for WiFi-Based Respiration Monitoring Under Dynamic Scenes[J]. Journal of Computer Research and Development. CSTR: 32373.14.issn1000-1239.202330884

面向动态场景的WiFi呼吸监测范围扩大方法

基金项目: 国家自然科学基金面上项目(61872322,62372412);浙江省自然科学基金项目(LY20F020026)
详细信息
    作者简介:

    林逸群: 1999年生. 硕士. CCF会员. 主要研究方向为无线感知和人工智能

    邱杰凡: 1984年生. 博士,副教授. CCF会员. 主要研究方向为嵌入式操作系统、物联网、人工智能

    张锦鸿: 2002年生. 学士. CCF会员. 主要研究方向为物联网、人工智能

    周克众: 2000年生. 硕士. CCF会员. 主要研究方向为物联网、无线感知

    方凯: 1992年生. 博士,教授. 主要研究方向为物联网、网络安全、深度学习、人工智能

    刘晓莹: 1990年生. 博士,副教授. CCF高级会员. 主要研究方向为智能物联网、能量捕获无线网络、信息新鲜度

    池凯凯: 1980年生. 博士,教授. CCF会员. 主要研究方向为无线供能通信网络、边缘计算

    通讯作者:

    方凯(Kaifang@ieee.org

  • 中图分类号: TP212.6

Range Expansion Method for WiFi-Based Respiration Monitoring Under Dynamic Scenes

Funds: This work was supported by the National Natural Science Foundation of China (61872322, 62372412) and the Zhejiang Provincial Natural Science Foundation (LY20F020026).
More Information
    Author Bio:

    Lin Yiqun: born in 1999. Master. Member of CCF. His main research interests include wireless sensing and artificial intelligence

    Qiu Jiefan: born in 1984. PhD, associate professor. Member of CCF. His main research interests include embedded operation system, IoT, and artificial intelligence

    Zhang Jinhong: born in 2002. Bachelor. Member of CCF. His main research interests include IoT and artificial intelligence

    Zhou Kezhong: born in 2000. Master. Member of CCF. His main research interests include IoT and wireless sensing

    Fang Kai: born in 1992. PhD, professor. His main research interests include IoT, network security, deep learning, and artificial intelligence

    Liu Xiaoying: born in 1990. PhD, associate professor. Senior member of CCF. Her main research interests include intelligent IoT, energy harvesting wireless networks and age of information

    Chi Kaikai: born in 1980. PhD, professor. Member of CCF. His main research interests include wireless powered communication networks and edge computing

  • 摘要:

    基于WiFi感知的呼吸监测具有非接触、低成本和隐私保护性高等优点,已成为当前物联网感知层研究的热点. 然而,现有基于WiFi感知的呼吸监测依赖敏感的信道状态信息,在应用时要求处于静止状态的监测目标不能距离WiFi收发设备过远,并要求不能有处于运动状态的非监测目标的干扰,这些要求制约了WiFi感知在呼吸监测方面的应用推广. 为此,提出了一种适应于动态场景的呼吸监测范围扩大方法FDRadio,尝试从分离动态干扰源、消除环境噪声以及增强动态反射信号功率3个方面提高感知精度和监测范围. 具体而言,首先通过合并多个WiFi信道扩展信道带宽,以提高WiFi感知的空间分辨率,并使用有线直连信道作为参考信道去除硬件噪声. 其次分析了监测范围与环境噪声的关系,并基于时间分集提出一种2级消除环境噪声的方法. 此外设计并实现了一种新颖的权值分配算法,通过合理叠加不同天线的比值信号,最大化动态反射信号功率,从而使处理后的信号对呼吸引起的胸腔微弱起伏具有更强的感知能力. 最后将处理后的信号转换到时域上的功率时延谱,利用监测目标和非监测目标之间信号传播路径的距离差,识别目标的呼吸信号. 在商用嵌入式设备上实现了FDRadio,并进行了一系列实验. 实验结果表明,即使监测人员附近有多个连续移动的非监测目标,FDRadio依然能够在7 m监测范围内保持监测误差小于0.5 bpm.

    Abstract:

    WiFi-based respiratory monitoring becomes a hot spot in the sensing layer of IoT benefiting from non-contact, low cost and high privacy protection. However, current WiFi-based respiratory monitoring methods relay on sensitive channel state information (CSI) samples which requires that single monitoring target keeps static without any moving non-target person and closing to the WiFi transceiver device. These requirements limit the large-scale applications of WiFi-based respiratory monitoring. Therefore, we propose a respiratory monitoring range extension method named FDRadio, which is able to work under dynamic interference scenes. In FDRadio, we improve the accuracy and robustness of respiratory monitoring from three aspects: separating dynamic interference sources, eliminating ambient noise and enhancing power of dynamic reflected signal. Specifically, we first expand the channel bandwidth by combining multiple WiFi channels to improve the spatial resolution of WiFi sensing, and employ wired direct channel to remove the accumulated hardware noise caused by combining channels. Second, we analyze the relationship between monitoring range and ambient noise, and then adopt time diversity techniques to design a two-stage ambient noise deduction process for FDRadio. In addition, we design a novel weight allocation algorithm, which maximizes the dynamic reflected signal power, and enhances the ability to sensing weak chest fluctuation caused by breath. Finally, the processed CSI samples are converted to power delay spectrum (PDP) in time domain. By this, the respiratory signal can be directly extracted from the target person using the distance difference. We implement FDRadio on a commercial embedded devices and conduct a series of experiments. The experimental results show that detection error is less than 0.5 bpm under the 7m available monitoring range, even if multiple moving non-target person exists.

  • 图  1   基于WiFi的呼吸感知示意图

    Figure  1.   WiFi-based respiration sensing diagram

    图  2   不同物体及距离的幅值变化

    Figure  2.   The amplitude changes with different objects and distances

    图  3   静态环境下的PDP谱图

    Figure  3.   PDP spectrum under static environment

    图  4   环境噪声的统计特性

    Figure  4.   The statistical characteristics of environmental noise

    图  5   叠加前与叠加后环境噪声的分布

    Figure  5.   Distribution of environmental noise before and after superposition

    图  6   将2个信号直接组合可能会导致动态分量抵消

    Figure  6.   Direct combination of two signals may result in the cancellation of dynamic components

    图  7   实验设备介绍

    Figure  7.   Introduction of experimental equipments

    图  8   实验环境与场景介绍

    Figure  8.   Experimental environment and scene introduction

    图  9   低动态场景下不同方法的检测误差

    Figure  9.   Detection errors of different methods in low dynamic scenes

    图  10   高动态场景中不同检测距离的检测误差

    Figure  10.   Detection errors at different detection distances in high dynamic scenes

    图  11   常用去噪方法效果对比

    Figure  11.   Effective comparison of denoising methods

    图  12   不同场景下不同天线配置的检测误差

    Figure  12.   Detection errors with different antenna configurations in different scenarios

    图  13   收发设备与用户成不同夹角

    Figure  13.   Sending and receiving equipment is at different angles from the volunteers

    表  1   FDRadio的实时性能

    Table  1   Real-Time Performance of FDRadio ms

    步骤 S1 S2 S3 S4 S5
    执行时间 26.98 0.11 61.62 7.74 70.8
    下载: 导出CSV

    表  2   LOS距离对检测误差的影响

    Table  2   Impact of LOS Distance on Detection Error

    LOS距离/m 1 1.5 2 2.5 3
    检测误差/bpm 0.32 0.26 0.23 0.22 0.35
    下载: 导出CSV

    表  3   不同位置的检测误差

    Table  3   Detection Error at Different Locations bpm

    位置P1P2P3P4
    检测误差0.430.390.330.38
    下载: 导出CSV
  • [1]

    Flaherty J H, Liu Meilin, Ding Lei, et al. China: The aging giant[J]. Journal of the American Geriatrics Society, 2007, 55(8): 1295−1300 doi: 10.1111/j.1532-5415.2007.01273.x

    [2]

    Paradiso R. Wearable health care system for vital signs monitoring[C]//Proc of the 4th Int IEEE EMBS Special Topic Conf on Information Technology Applications in Biomedicine. Piscataway, NJ: IEEE, 2003: 283−286

    [3]

    Gokalp H, Clarke M. Monitoring activities of daily living of the elderly and the potential for its use in telecare and telehealth: A review[J]. Telemedicine and E-health, 2013, 19(12): 910−923 doi: 10.1089/tmj.2013.0109

    [4]

    Bartula M, Tigges T, Muehlsteff J. Camera-based system for contactless monitoring of respiration[C]//Proc of the 35th Annual Int Conf of the IEEE Engineering in Medicine and Biology Society (EMBC). Piscataway, NJ: IEEE, 2013: 2672−2675

    [5] Hwang H S, Lee E C. Non-contact respiration measurement method based on RGB camera using 1D convolutional neural networks[J]. Sensors, 2021, 21(10): 3456

    Hwang H S,Lee E C. Non-contact respiration measurement method based on RGB camera using 1D convolutional neural networks[J]. Sensors,2021,21(10):3456

    [6]

    Brieva J, Ponce H, Moya-Albor E. A contactless respiratory rate estimation method using a hermite magnification technique and convolutional neural networks[J]. Applied Sciences, 2020, 10(2): 607−617 doi: 10.3390/app10020607

    [7]

    Kaushik S. An overview of technical aspect for WiFi networks technology[J]. International Journal of Electronics and Computer Science Engineering, 2012, 1(1): 28−34

    [8]

    Liu Jian, Wang Yan, Chen Yingying, et al. Tracking vital signs during sleep leveraging off-the-shelf WiFi[C]//Proc of the 16th ACM Int Symp on Mobile ad Hoc Networking and Computing. New York : ACM, 2015: 267−276

    [9]

    Wang Xuyu, Yang Chao, Mao Shiwen. TensorBeat: Tensor decomposition for monitoring multiperson breathing beats with commodity WiFi[J]. ACM Transactions on Intelligent Systems and Technology, 2017, 9(1): 1−27

    [10]

    Yang Yanni, Cao Jiannong, Liu Xuefeng, et al. Multi-person sleeping respiration monitoring with COTS WiFi devices[C]//Proc of the 15th IEEE Int Conf on Mobile Ad Hoc and Sensor Systems (MASS). Piscataway, NJ: IEEE, 2018: 37−45

    [11]

    Li Ming, Lukyanenko A, Ou Zhonghong, et al. Multipath transmission for the Internet: A survey[J]. IEEE Communications Surveys & Tutorials, 2016, 18(4): 2887−2925.

    [12]

    Zhang Feng, Chen Chen, Wang Beibei, et al. WiSpeed: A statistical electromagnetic approach for device-free indoor speed estimation[J]. IEEE Internet of Things Journal, 2018, 5(3): 2163−2177 doi: 10.1109/JIOT.2018.2826227

    [13]

    Zeng Youwei, Wu Dan, Gao Ruiyang, et al. FullBreathe: Full human respiRadion detection exploiting complementarity of CSI phase and amplitude of WiFi signals[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 2(3): 148−166

    [14]

    Shi Shuyu, Xie Yaxiong, Li Mo, et al. Synthesizing wider WiFi bandwidth for respiration rate monitoring in dynamic environments[C]//Proc of the 38th IEEE Conf on Computer Communications. Piscataway, NJ: IEEE, 2019: 181−189

    [15]

    Cui T, Tellambura C. Power delay profile and noise variance estimation for ofdm[J]. IEEE Communications Letters, 2006, 10(1): 25−27 doi: 10.1109/LCOMM.2006.1576558

    [16]

    Xie Yaxiong, Li Zhenjiang, Li Mo. Precise power delay profiling with commodity WiFi[C]//Proc of the 21st Annual Int Conf on Mobile Computing and Networking. New York: ACM, 2015: 53−64

    [17]

    Qiu Jiefan, Zheng Pan, Chi Kaikai, et al. RespiRadion monitoring in high-dynamic environments via combining multiple WiFi channels based on wire direct connection between Rx/Tx[J]. IEEE Internet of Things Journal, 2022, 10(2): 1558−1573

    [18]

    Zheng Tianyue, Chen Zhe, Zhang Shujie, et al. More-Fi: Motion-robust and fine-grained respiration monitoring via deep-learning UWB radar[C]//Proc of the 19th Conf on Embedded Networked Sensor Systems. New York: ACM, 2021: 111−124

    [19]

    Lv Wenjie, He Wangdong, Lin Xiepeng, et al. Non-contact monitoring of human vital signs using FMCW millimeter wave radar in the 120 GHz band[J]. Sensors, 2021, 21(8): 2732 doi: 10.3390/s21082732

    [20]

    Liu Luyao, Zhang Jie, Qu Ying, et al. mmRH: Noncontact vital sign detection with an FMCW mm-wave radar[J]. IEEE Sensors Journal, 2023, 23(8): 8856−8866 doi: 10.1109/JSEN.2023.3250500

    [21]

    Yang Chao, Wang Xuyu, Mao Shiwen. Respiration monitoring with RFID in driving environments[J]. IEEE Journal on Selected Areas in Communications, 2020, 39(2): 500−512

    [22]

    Zhang Shigeng, Liu Xuan, Liu Yangyang, et al. Accurate respiration monitoring for mobile users with commercial RFID devices[J]. IEEE Journal on Selected Areas in Communications, 2020, 39(2): 513−525

    [23]

    Li Shengjie, Li Xiang, Niu Kai, et al. Ar-alarm: An adaptive and robust intrusion detection system leveraging CSI from commodity Wi-Fi[C]//Proc of the 15th Int Conf on Smart Homes and Health Telematics. Berlin: Springer, 2017: 211−223

    [24]

    Xin Tong, Guo Bin, Wang Zhu, et al. FreeSense: A robust approach for indoor human detection using Wi-Fi signals[J]. Proc of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 2(3): 143−165

    [25]

    Gong Wei, Liu Jiangchuan. SiFi: Pushing the limit of time-based WiFi localization using a single commodity access point[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 2(1): 10−30

    [26]

    Qian Kun, Wu Chenshu, Yang Zheng, et al. Widar: Decimeter-level passive tracking via velocity monitoring with commodity Wi-Fi[C/OL]//Proc of the 18th ACM Int Symp on Mobile Ad Hoc Networking and Computing. New York: ACM, 2017[2023-06-15]. https://dl.acm.org/doi/abs/10.1145/3084041.3084067

    [27]

    Shahzad M, Zhang Shaohu. Augmenting user identification with WiFi based gesture recognition[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 2(3): 134−160

    [28]

    Palipana S, Rojas D, Agrawal P, et al. FallDeFi: Ubiquitous fall detection using commodity WiFi devices[C]//Proc of the 19th ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 1−25

    [29]

    Wang Hao, Zhang Daqing, Wang Yasha, et al. RT-Fall: A real-time and contactless fall detection system with commodity WiFi devices[J]. IEEE Transactions on Mobile Computing, 2016, 16(2): 511−526

    [30]

    Wang Guanhua, Zou Yongpan, Zhou Zimu, et al. We can hear you with Wi-Fi![C]//Proc of the 20th Annual Int Conf on Mobile Computing and Networking. New York: ACM, 2014: 593−604

    [31]

    Gao Ruiyang, Zhang Mi, Zhang J, et al. Towards position-independent sensing for gesture recognition with WiFi[J]. Proc of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2021, 5(2): 61−88

    [32]

    Niu Kai, Zhang Fusang, Xiong Jie, et al. Boosting fine-grained activity sensing by embracing wireless multipath effects[C]//Proc of the 14th Int Conf on Emerging Networking Experiments and Technologies. New York: ACM, 2018: 139−151

    [33]

    Wang Xuyu, Yang Chao, Mao Shiwen. PhaseBeat: Exploiting CSI phase data for vital sign monitoring with commodity WiFi devices[C]//Proc of the 37th IEEE Int Conf on Distributed Computing Systems (ICDCS). Piscataway, NJ: IEEE, 2017: 1230−1239

    [34]

    Liu Xuefeng, Cao Jiannong, Tang Shaojie, et al. Wi-Sleep: Contactless sleep monitoring via WiFi signals[C]//Proc of the 35th IEEE Real-Time Systems Symp. Piscataway, NJ: IEEE, 2014: 346−355

    [35]

    Guo Zhengxin, Yuan Wenyang, Gui Linqing, et al. BreatheBand: A fine-grained and robust respiration monitor system using WiFi signals[J]. ACM Transactions on Sensor Networks, 2023, 19(4): 1−18

    [36]

    Bao Nan, Du Jiajun, Wu Chengyang, et al. Wi-Breath: A WiFi-based contactless and real-time respiration monitoring scheme for remote healthcare[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 27(5): 2276−2285

    [37]

    Zhou Xinyi, Jiang Ting, Ding Xue, et al. A robust respiration detection system via similarity-based selection mechanism using WiFi[C/OL]//Proc of the 42nd IEEE Wireless Communications and Networking Conf (WCNC). Piscataway, NJ: IEEE, 2023[2023-07-11]. https://ieeexplore.ieee.org/abstract/document/10118897

    [38]

    Zeng Youwei, Wu Dan, Xiong Jie, et al. FarSense: Pushing the range limit of WiFi-based respiRadion sensing with CSI Radio of two antennas[C]. Proc of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, New York: ACM, 2019, 3(3): 121−146

    [39]

    Li Yang, Wu Dan, Zhang Jie, et al. DiverSense: Maximizing Wi-Fi sensing range leveraging signal diversity[C]. Proc of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, New York: ACM, 2022, 6(2): 94−121

    [40]

    Wang Wei, Liu A X, Shahzad M, et al. Understanding and modeling of WiFi signal based human activity recognition[C]//Proc of the 21st Annual Int Conf on Mobile Computing and Networking. New York: ACM, 2015: 65−76

    [41]

    Yu Nan, Wang Wei, Liu A X, et al. QGesture: Quantifying gesture distance and direction with WiFi signals[J]. Proc of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 2(1): 51−73

    [42]

    Zeng Youwei, Liu Jinyi, Xiong Jie, et al. Exploring multiple antennas for long-range WiFi sensing[J]. Proc of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2021, 5(4): 190−220

    [43]

    Halperin D, Hu Wenjun, Sheth A, et al. Tool release: Gathering 802.11n traces with channel state information[J]. ACM SIGCOMM Computer Communication Review, 2011, 41(1): 53−53 doi: 10.1145/1925861.1925870

    [44]

    Keerativoranan N, Haniz A, Saito K, et al. Mitigation of CSI temporal phase rotation with B2B calibradion method for fine-grained motion detection analysis on commodity WiFi devices[J]. Sensors, 2018, 18(11): 3795−3813 doi: 10.3390/s18113795

    [45] 韩旭东,张春业,曹建海. WLAN 中的 MIMO OFDM 技术[J]. 中兴通讯技术,2003,9(6):39−41 doi: 10.3969/j.issn.1009-6868.2003.06.012

    Han Xudong, Zhang Chunye, Cao Jianhai. MIMO OFDM technology in WLAN[J]. ZTE Communications Technology, 2003, 9(6): 39−41(in Chinese) doi: 10.3969/j.issn.1009-6868.2003.06.012

    [46]

    Han Feiyu, Wan Chengcheng, Yang Panlong, et al. Ace: Accurate and automatic CSI error calibradion for wireless localization system[C]// Proc of the 6th Int Conf on Big Data Computing and Communications (BIGCOM). Piscataway, NJ: IEEE, 2020: 15−23

    [47]

    Bhatia R, Davis C. A Cauchy-Schwarz inequality for operators with applications[J]. Linear Algebra and its Applications, 1995, 223(1): 119−129

    [48]

    Tkac A, Wieser V. Channel estimation using measurement of channel impulse response[C]//Proc of the 22nd IEEE ELEKTRO. Piscataway, NJ: IEEE, 2014: 113−117

    [49] 刘志平,李思达. 复数域与实数域最小二乘平差的等价性研究[J]. 大地测量与地球动力学,2016,36(8):741−744

    Liu Zhiping, Li Sida. Research on the equivalence of least squares adjustment in complex domain and real domain[J]. Geodesy and Geodynamics, 2016, 36(8): 741−744 (in Chinese)

图(13)  /  表(3)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  58
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-31
  • 修回日期:  2024-05-15
  • 录用日期:  2024-08-08
  • 网络出版日期:  2024-08-13

目录

    /

    返回文章
    返回