• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

考虑长度匹配的快速单通量量子电路布线算法

刘耿耿, 余延涛, 周茹平, 魏榕山, 徐宁

刘耿耿, 余延涛, 周茹平, 魏榕山, 徐宁. 考虑长度匹配的快速单通量量子电路布线算法[J]. 计算机研究与发展. DOI: 10.7544/issn1000-1239.202440065
引用本文: 刘耿耿, 余延涛, 周茹平, 魏榕山, 徐宁. 考虑长度匹配的快速单通量量子电路布线算法[J]. 计算机研究与发展. DOI: 10.7544/issn1000-1239.202440065
Liu Genggeng, Yu Yantao, Zhou Ruping, Wei Rongshan, Xu Ning. Rapid Single-Flux-Quantum Circuit Routing Algorithm Considering Length Matching[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440065
Citation: Liu Genggeng, Yu Yantao, Zhou Ruping, Wei Rongshan, Xu Ning. Rapid Single-Flux-Quantum Circuit Routing Algorithm Considering Length Matching[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440065
刘耿耿, 余延涛, 周茹平, 魏榕山, 徐宁. 考虑长度匹配的快速单通量量子电路布线算法[J]. 计算机研究与发展. CSTR: 32373.14.issn1000-1239.202440065
引用本文: 刘耿耿, 余延涛, 周茹平, 魏榕山, 徐宁. 考虑长度匹配的快速单通量量子电路布线算法[J]. 计算机研究与发展. CSTR: 32373.14.issn1000-1239.202440065
Liu Genggeng, Yu Yantao, Zhou Ruping, Wei Rongshan, Xu Ning. Rapid Single-Flux-Quantum Circuit Routing Algorithm Considering Length Matching[J]. Journal of Computer Research and Development. CSTR: 32373.14.issn1000-1239.202440065
Citation: Liu Genggeng, Yu Yantao, Zhou Ruping, Wei Rongshan, Xu Ning. Rapid Single-Flux-Quantum Circuit Routing Algorithm Considering Length Matching[J]. Journal of Computer Research and Development. CSTR: 32373.14.issn1000-1239.202440065

考虑长度匹配的快速单通量量子电路布线算法

基金项目: 国家自然科学基金项目(62372109);福建省杰出青年科学基金项目(2023J06017).
详细信息
    作者简介:

    刘耿耿: 1988年生. 博士,教授,博士生导师,CCF高级会员. 主要研究方向为微流控生物芯片和集成电路的设计自动化

    余延涛: 2000年生. 硕士研究生,CCF学生会员. 主要研究方向为超大规模集成电路布线

    周茹平: 1998年生. 博士研究生,CCF学生会员. 主要研究方向为超大规模集成电路布线、时钟树综合

    魏榕山: 1980年生. 博士,教授,博士生导师. 主要研究方向为智能传感器芯片设计、面向深度学习等应用的人工智能芯片设计

    徐宁: 1968年生. 博士,教授,博士生导师,CCF高级会员. 主要研究方向为电子设计自动化、集成电路设计自动化和人工智能

    通讯作者:

    魏榕山(wrs08@fzu.edu.cn

  • 中图分类号: TP391

Rapid Single-Flux-Quantum Circuit Routing Algorithm Considering Length Matching

Funds: This work was supported by the National Natural Science Foundation of China (62372109) and the Fujian Science Foundation for Distinguished Young Scholars (2023J06017).
More Information
    Author Bio:

    Liu Genggeng: born in 1988. PhD, professor, PhD supervisor, senior member of CCF. His main research interests include design automation for microfluidic biochips and integrated circuits

    Yu Yantao: born in 2000. Master postgraduate, student member of CCF. His main research interests include physical design of rapid single-flux-quantum circuit and VLSI routing

    Zhou Ruping: born in 1998. PhD candidate, student member of CCF. Her main research interests include VLSI routing, clock tree synthesis

    Wei Rongshan: born in 1980. PhD, professor, PhD supervisor. His main research interests include intelligent sensor chip design, artificial intelligence chip design for deep learning and other applications

    Xu Ning: born in 1968. PhD, professor, PhD supervisor, senior member of CCF. His main research interests include electronic design automation, design automation for integrated circuits and artificial intelligence

  • 摘要:

    由于快速单通量量子 (rapid single-flux-quantum, RSFQ)电路的高频特性,对电路的版图设计构成了巨大挑战. 针对RSFQ电路的高频特性带来的电路时延问题,可以在布线阶段通过使用延时元件如无源传输线来解决. 因为无源传输线的时延与它的长度近似成正比,且传输线的功耗不随着线长增加而增大,所以对于快速单通量量子电路而言长度匹配布线是一个非常重要的问题. 为此,提出了一种高效的考虑长度匹配的RSFQ电路布线算法,包括以下关键策略:1) 在生成初始路径时,提出了一种迂回布线的方法,在不改变初始布线空间的情况下,满足无源传输线的部分长度匹配;2) 提出了一种基于区域感知的迭代资源插入策略,减少需要添加的额外资源区域;3) 提出了一种考虑阻塞代价的长度匹配驱动布线策略,提高了对布线空间的资源利用. 实验结果表明所提算法与现有的多端布线算法相比,布线所需的区域面积减少了8%,运行时间减少了36%,从而取得快速且高质量的布线结果.

    Abstract:

    Because of the high frequency characteristics of rapid single-flux quantum circuits (RSFQ), it poses a great challenge to circuit layout design. In order to solve the circuit delay problem caused by the high frequency characteristics of RSFQ, delay elements such as passive transmission line can be used in the routing stage. The delay of a passive transmission line is roughly proportional to its length, and the power consumption of the passive transmission line does not increase with the increase of the wirelength, so length matching routing is a crucial problem for RSFQ circuits. Therefore, this paper proposes an efficient RSFQ circuit routing algorithm considering length matching, including the following key strategies: 1) when generating the initial path, a method of detour routing is presented to meet the partial length matching of passive transmission lines without changing the initial routing space; 2) an iterative resource insertion algorithm based on region-awareness is utilized to reduce the area of additional resources needed to be added; 3) a length-matching driven routing algorithm considering blocking cost is designed, which improves the resource utilization of routing space. Experimental results show that, compared with existing multi-terminal routing algorithms, the proposed algorithm reduces the area required for routing by 8% and the running time by 36%, thus achieving fast and high-quality routing results.

  • 图  1   SPL分配的对比

    Figure  1.   Comparison of SPL allocation

    图  2   算法流程图

    Figure  2.   Algorithm flowchart

    图  3   PTL切割及迂回布线

    Figure  3.   PTL cutting and detour routing

    图  4   迂回布线方案

    Figure  4.   Detour routing result

    图  6   布线区域扩展结果对比

    Figure  6.   Comparison of routing area expansion results

    图  5   资源分配及布线过程

    Figure  5.   Resource allocation and routing process

    图  7   插入位置的条件

    Figure  7.   Conditions for insertion position

    图  8   潜在可用单元利用情况

    Figure  8.   Utilization of potentially available units

    图  9   布线结果的对比

    Figure  9.   Comparison of routing result

    图  10   局部布线结果图

    Figure  10.   Local routing result

    图  11   运行时间对比

    Figure  11.   Comparison of run time

    表  1   多端线网测试用例详细信息

    Table  1   Details of Test Cases for Multi-Terminal Nets

    基准
    电路
    布线区域
    高度
    连接
    数量
    最大延长长度/
    平均延长长度
    RR0356830.00/0
    RR13569121.91/46
    RR23569928.26/56
    RR335610340.78/130
    RR435610594.02/252
    RR535699128.30/370
    RR63565067.60/346
    Newb135699126.30/370
    Newb235610691.01/252
    Newb33569164.30/260
    Newb435650113.15/554
    Newb535610595.24/288
    下载: 导出CSV

    表  2   基于PTL切割转移策略对比结果

    Table  2   Comparison Results of Strategies Based on PTL Cut and Shift

    基准电路布线区域宽度
    文献[15]文献[17]CAS(本文)
    RR0202020
    RR1403434
    RR2464039
    RR3544948
    RR41087975
    RR5967573
    RR6282828
    Newb1977874
    Newb21038280
    Newb3545047
    Newb4493935
    Newb51028278
    比率1.261.041.00
    下载: 导出CSV

    表  3   基于区域感知的迭代资源插入策略对比结果

    Table  3   Comparison Results of Strategies Based on Area-Aware Iterative Resource Insertion

    基准电路布线区域宽度
    文献[15]文献[17]AIRI(本文)
    RR0202020
    RR1403437
    RR2464037
    RR3544949
    RR41087975
    RR5967573
    RR6282829
    Newb1977876
    Newb21038280
    Newb3545048
    Newb4493936
    Newb51028276
    比率1.251.031.00
    下载: 导出CSV

    表  4   阻塞感知的蜿蜒布线策略对比结果

    Table  4   Comparison Results of Strategies Based on Blocking Aware Snaking Routing

    基准电路布线区域宽度
    文献[15]文献[17]BASR(本文)
    RR0202020
    RR1403434
    RR2464040
    RR3544946
    RR41087975
    RR5967575
    RR6282827
    Newb1977876
    Newb21038278
    Newb3545047
    Newb4493935
    Newb51028275
    比率1.271.041.00
    下载: 导出CSV

    表  5   多端线网布线结果对比

    Table  5   Comparison of Routing Results for Multi-Terminal Nets

    基准电路布线区域宽度
    文献[15]文献[17]LMRouter(本文)
    RR0202020
    RR1403435
    RR2464039
    RR3544945
    RR41087972
    RR5967569
    RR6282826
    Newb1977872
    Newb21038277
    Newb3545045
    Newb4493933
    Newb51028273
    比率1.311.081.00
    下载: 导出CSV

    表  6   单端线网布线结果对比

    Table  6   Comparison of Routing Results for Single-Terminal Nets

    连接数量/
    布线区域高度
    最大延长长度/
    平均延长长度
    布线区域宽度
    文献[15]文献[17]LMRouter(本文)
    15/20043/105141414
    15/20044/122141614
    15/308/26161614
    15/3018/79222220
    25/5012/46222321
    25/5016/51242321
    40/8016/49282826
    40/8019/56303228
    40/20040/168282927
    40/20042/182302927
    50/10023/99423935
    50/10025/111433937
    比率1.101.081.00
    下载: 导出CSV
  • [1] 何小威,乐大珩,郭维,等. 高性能自研处理器物理设计频率提升方法[J],计算机研究与发展2024,61(6):1429−1435

    He Xiaowei, Yue Daheng, Guo Wei, et al. Promoting frequency method for our own high performance processor physical design[J]. Journal of Computer Research and Development, 2024, 61(6): 1429−1435(in Chinese)

    [2]

    Sato R, Hatanaka Y, Ando Y, et al. High-speed operation of random access-memory embedded microprocessor with minimal instruction set architecture based on rapid single-flux-quantum logic[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(4): 1−5 doi: 10.1109/TASC.2017.2684059

    [3]

    Castellanos-Beltran M A, Olaya D I, Sirois A J, et al. Single-flux-quantum multiplier circuits for synthesizing gigahertz waveforms with quantum-based accuracy[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(3): 1−9

    [4]

    Ando Y, Sato R, Tanaka M, et al. Design and demonstration of an 8-bit bit-serial RSFQ microprocessor: CORE e4[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(5): 1−5

    [5]

    Fu Rongliang, Huang Junying, Wu Haibin, et al. JBNN: A hardware design for binarized neural networks using single-flux-quantum circuits[J], IEEE Transactions on Computers, 2022, 71(12): 3203−3214

    [6]

    Obata K, Takagi K, Takagi N. A clock scheduling algorithm for high-throughput RSFQ digital circuits[J]. IEICE Transactions on Fundamentals, 2008, 91(12): 3772−3782

    [7]

    Chen W, Rylyakov A V, Patel V, et al. Rapid single-flux-quantum T-flip flop operating up to 770 GHz[J]. IEEE Transactions on Applied Superconductivity, 1999, 9(2): 3212−3215 doi: 10.1109/77.783712

    [8]

    Katam N, Shafaei A, and Pedram M. Design of complex rapid single-flux-quantum cells with application to logic synthesis[C/OL]// Proc of the 16th Int Superconductive Electronics Conf. Piscataway, NJ: IEEE, 2017[2024-08-17]. https://ieeexplore.ieee.org/abstract/document/8314236

    [9]

    Kameda Y, Yorozu S, Hashimoto Y, A new design methodology for single-flux-quantum (SFQ) logic circuits using passive-transmission-line (PTL) wiring[J]. IEEE Transactions on Applied Superconductivity, 2017, 17(2): 508−511

    [10]

    Schindler L, Roux P l, Fourie C J. Impedance matching of passive transmission line receivers to improve reflections between RSFQ logic cells[J]. IEEE Transactions on Applied Superconductivity, 2020, 30(2): 1−7

    [11]

    Hashimoto Y, Yorozu S, Kameda Y, et al. Development of passive interconnection technology for SFQ circuits[J]. IEICE Transactions on Electronics[J], 2005, 88(2): 198−207

    [12]

    Ortlepp T, Uhlmann F H. Impedance matching of microstrip inductors in digital superconductive electronics[J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 644−648 doi: 10.1109/TASC.2009.2019284

    [13]

    Jabbari T, Krylov G, Whiteley S, et al. Repeater insertion in SFQ interconnect[J]. IEEE Transactions on Applied Superconductivity, 2020, 30(8): 1−8

    [14]

    Tanaka M, OBATA K, lto Y, et al. Automated passive-transmission-line routing tool for single-flux-quantum circuits based on A* algorithm[J]. IEICE Transactions on Electronics, 2010, 93(4): 435−439

    [15]

    Kito N, Takagi K, Takagi N. Automatic wire-routing of SFQ digital circuits considering wire-length matching[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(3): 1−5

    [16]

    Kito N, Takagi K, Takagi N. A fast wire-routing method and an automatic layout tool for RSFQ digital circuits considering wirelength matching[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(4): 1−5

    [17]

    Kou Mingyang, Cheng Peiyi, Zeng Jun, et al, Splitter-aware multiterminal routing with length-matching constraint for RSFQ circuits[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40(11): 2251−2264

    [18]

    Kitamura K, Takagi K, Takagi N. A two-step routing method with wire length budgeting for PTL routing of SFQ logic circuits[J/OL]. Journal of Physics: Conference Series, 2020, 1590 [2024-08-17]. https://dx. doi.org/10.1088/1742-6596/1590/1/012043

    [19]

    Yan Jintai. Length-matching-constrained region routing in rapid single-flux-quantum circuits[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 40(5): 945−956

    [20]

    Yan Jintai. Via-minimization-oriented region routing under length-matching constraints in rapid single-flux-quantum circuits[J]. IEEE Transactions on Very Large Scale Integration Systems, 2021, 29(6): 1257−1270 doi: 10.1109/TVLSI.2021.3059786

    [21]

    Lin Tingru, Edwards T, Pedram M. qGDR: A via-minimization-oriented routing tool for large-scale superconductive single-flux-quantum circuits[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(7): 1−12

    [22]

    Lin Tingru, Pedram M. Reducing the maximum length of connections in single-flux-quantum circuits during routing[C/OL]// Proc of IEEE Int Superconductive Electronics Conf. Piscataway, NJ: IEEE, 2019[2024-08-16]. https://ieeexplore.ieee.org/abstract/document/8990897

    [23]

    Oshimura T Y, Kuh E S. Efficient algorithms for channel routing[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1982, 1(1): 25−35 doi: 10.1109/TCAD.1982.1269993

  • 期刊类型引用(2)

    1. 聂萌瑶,刘鑫. 考虑最大通信量的物联网群体访问路由算法. 计算机仿真. 2024(02): 415-419 . 百度学术
    2. 陈淑平,李祎,何王全,漆锋滨. 胖树拓扑中高效实用的定制多播路由算法. 计算机研究与发展. 2022(12): 2689-2707 . 本站查看

    其他类型引用(0)

图(11)  /  表(6)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 2
出版历程
  • 收稿日期:  2024-02-01
  • 修回日期:  2024-10-15
  • 录用日期:  2024-11-12
  • 网络出版日期:  2024-11-18

目录

    /

    返回文章
    返回