-
摘要:
由于快速单通量量子 (rapid single-flux-quantum, RSFQ)电路的高频特性,对电路的版图设计构成了巨大挑战. 针对RSFQ电路的高频特性带来的电路时延问题,可以在布线阶段通过使用延时元件如无源传输线来解决. 因为无源传输线的时延与它的长度近似成正比,且传输线的功耗不随着线长增加而增大,所以对于快速单通量量子电路而言长度匹配布线是一个非常重要的问题. 为此,提出了一种高效的考虑长度匹配的RSFQ电路布线算法,包括以下关键策略:1) 在生成初始路径时,提出了一种迂回布线的方法,在不改变初始布线空间的情况下,满足无源传输线的部分长度匹配;2) 提出了一种基于区域感知的迭代资源插入策略,减少需要添加的额外资源区域;3) 提出了一种考虑阻塞代价的长度匹配驱动布线策略,提高了对布线空间的资源利用. 实验结果表明所提算法与现有的多端布线算法相比,布线所需的区域面积减少了8%,运行时间减少了36%,从而取得快速且高质量的布线结果.
Abstract:Because of the high frequency characteristics of rapid single-flux quantum circuits (RSFQ), it poses a great challenge to circuit layout design. In order to solve the circuit delay problem caused by the high frequency characteristics of RSFQ, delay elements such as passive transmission line can be used in the routing stage. The delay of a passive transmission line is roughly proportional to its length, and the power consumption of the passive transmission line does not increase with the increase of the wirelength, so length matching routing is a crucial problem for RSFQ circuits. Therefore, this paper proposes an efficient RSFQ circuit routing algorithm considering length matching, including the following key strategies: 1) when generating the initial path, a method of detour routing is presented to meet the partial length matching of passive transmission lines without changing the initial routing space; 2) an iterative resource insertion algorithm based on region-awareness is utilized to reduce the area of additional resources needed to be added; 3) a length-matching driven routing algorithm considering blocking cost is designed, which improves the resource utilization of routing space. Experimental results show that, compared with existing multi-terminal routing algorithms, the proposed algorithm reduces the area required for routing by 8% and the running time by 36%, thus achieving fast and high-quality routing results.
-
-
表 1 多端线网测试用例详细信息
Table 1 Details of Test Cases for Multi-Terminal Nets
基准
电路布线区域
高度连接
数量最大延长长度/
平均延长长度RR0 356 83 0.00/0 RR1 356 91 21.91/46 RR2 356 99 28.26/56 RR3 356 103 40.78/130 RR4 356 105 94.02/252 RR5 356 99 128.30/370 RR6 356 50 67.60/346 Newb1 356 99 126.30/370 Newb2 356 106 91.01/252 Newb3 356 91 64.30/260 Newb4 356 50 113.15/554 Newb5 356 105 95.24/288 表 2 基于PTL切割转移策略对比结果
Table 2 Comparison Results of Strategies Based on PTL Cut and Shift
表 3 基于区域感知的迭代资源插入策略对比结果
Table 3 Comparison Results of Strategies Based on Area-Aware Iterative Resource Insertion
表 4 阻塞感知的蜿蜒布线策略对比结果
Table 4 Comparison Results of Strategies Based on Blocking Aware Snaking Routing
表 5 多端线网布线结果对比
Table 5 Comparison of Routing Results for Multi-Terminal Nets
表 6 单端线网布线结果对比
Table 6 Comparison of Routing Results for Single-Terminal Nets
-
[1] 何小威,乐大珩,郭维,等. 高性能自研处理器物理设计频率提升方法[J],计算机研究与发展2024,61(6):1429−1435 He Xiaowei, Yue Daheng, Guo Wei, et al. Promoting frequency method for our own high performance processor physical design[J]. Journal of Computer Research and Development, 2024, 61(6): 1429−1435(in Chinese)
[2] Sato R, Hatanaka Y, Ando Y, et al. High-speed operation of random access-memory embedded microprocessor with minimal instruction set architecture based on rapid single-flux-quantum logic[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(4): 1−5 doi: 10.1109/TASC.2017.2684059
[3] Castellanos-Beltran M A, Olaya D I, Sirois A J, et al. Single-flux-quantum multiplier circuits for synthesizing gigahertz waveforms with quantum-based accuracy[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(3): 1−9
[4] Ando Y, Sato R, Tanaka M, et al. Design and demonstration of an 8-bit bit-serial RSFQ microprocessor: CORE e4[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(5): 1−5
[5] Fu Rongliang, Huang Junying, Wu Haibin, et al. JBNN: A hardware design for binarized neural networks using single-flux-quantum circuits[J], IEEE Transactions on Computers, 2022, 71(12): 3203−3214
[6] Obata K, Takagi K, Takagi N. A clock scheduling algorithm for high-throughput RSFQ digital circuits[J]. IEICE Transactions on Fundamentals, 2008, 91(12): 3772−3782
[7] Chen W, Rylyakov A V, Patel V, et al. Rapid single-flux-quantum T-flip flop operating up to 770 GHz[J]. IEEE Transactions on Applied Superconductivity, 1999, 9(2): 3212−3215 doi: 10.1109/77.783712
[8] Katam N, Shafaei A, and Pedram M. Design of complex rapid single-flux-quantum cells with application to logic synthesis[C/OL]// Proc of the 16th Int Superconductive Electronics Conf. Piscataway, NJ: IEEE, 2017[2024-08-17]. https://ieeexplore.ieee.org/abstract/document/8314236
[9] Kameda Y, Yorozu S, Hashimoto Y, A new design methodology for single-flux-quantum (SFQ) logic circuits using passive-transmission-line (PTL) wiring[J]. IEEE Transactions on Applied Superconductivity, 2017, 17(2): 508−511
[10] Schindler L, Roux P l, Fourie C J. Impedance matching of passive transmission line receivers to improve reflections between RSFQ logic cells[J]. IEEE Transactions on Applied Superconductivity, 2020, 30(2): 1−7
[11] Hashimoto Y, Yorozu S, Kameda Y, et al. Development of passive interconnection technology for SFQ circuits[J]. IEICE Transactions on Electronics[J], 2005, 88(2): 198−207
[12] Ortlepp T, Uhlmann F H. Impedance matching of microstrip inductors in digital superconductive electronics[J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 644−648 doi: 10.1109/TASC.2009.2019284
[13] Jabbari T, Krylov G, Whiteley S, et al. Repeater insertion in SFQ interconnect[J]. IEEE Transactions on Applied Superconductivity, 2020, 30(8): 1−8
[14] Tanaka M, OBATA K, lto Y, et al. Automated passive-transmission-line routing tool for single-flux-quantum circuits based on A* algorithm[J]. IEICE Transactions on Electronics, 2010, 93(4): 435−439
[15] Kito N, Takagi K, Takagi N. Automatic wire-routing of SFQ digital circuits considering wire-length matching[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(3): 1−5
[16] Kito N, Takagi K, Takagi N. A fast wire-routing method and an automatic layout tool for RSFQ digital circuits considering wirelength matching[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(4): 1−5
[17] Kou Mingyang, Cheng Peiyi, Zeng Jun, et al, Splitter-aware multiterminal routing with length-matching constraint for RSFQ circuits[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40(11): 2251−2264
[18] Kitamura K, Takagi K, Takagi N. A two-step routing method with wire length budgeting for PTL routing of SFQ logic circuits[J/OL]. Journal of Physics: Conference Series, 2020, 1590 [2024-08-17]. https://dx. doi.org/10.1088/1742-6596/1590/1/012043
[19] Yan Jintai. Length-matching-constrained region routing in rapid single-flux-quantum circuits[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 40(5): 945−956
[20] Yan Jintai. Via-minimization-oriented region routing under length-matching constraints in rapid single-flux-quantum circuits[J]. IEEE Transactions on Very Large Scale Integration Systems, 2021, 29(6): 1257−1270 doi: 10.1109/TVLSI.2021.3059786
[21] Lin Tingru, Edwards T, Pedram M. qGDR: A via-minimization-oriented routing tool for large-scale superconductive single-flux-quantum circuits[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(7): 1−12
[22] Lin Tingru, Pedram M. Reducing the maximum length of connections in single-flux-quantum circuits during routing[C/OL]// Proc of IEEE Int Superconductive Electronics Conf. Piscataway, NJ: IEEE, 2019[2024-08-16]. https://ieeexplore.ieee.org/abstract/document/8990897
[23] Oshimura T Y, Kuh E S. Efficient algorithms for channel routing[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1982, 1(1): 25−35 doi: 10.1109/TCAD.1982.1269993
-
期刊类型引用(2)
1. 聂萌瑶,刘鑫. 考虑最大通信量的物联网群体访问路由算法. 计算机仿真. 2024(02): 415-419 . 百度学术
2. 陈淑平,李祎,何王全,漆锋滨. 胖树拓扑中高效实用的定制多播路由算法. 计算机研究与发展. 2022(12): 2689-2707 . 本站查看
其他类型引用(0)