Smart Integrated Cooperative Transmission Method for Stereoscopic Heterogeneous Networks
-
摘要:
为应对空天地立体化异构网络中由于节点异构性及连通变化带来的复杂挑战,提出了具备有界无环无阻策略更新能力的传输控制方法HWCTC. 该方法以跨层协同控制的方式将网络路由算法引入传输控制框架;在此基础上将路由更新节点的选择问题建模为节点搜索问题,使网络传输中需考虑被调用的资源限定在有界范围内. 在此基础上,设计了一种基于广度优先的启发式递增搜索算法,该算法能够有效进行全局和局部的路由配置更新,同时确保新路径无环路且无网络黑洞. 此外,为适应空天地立体化异构网络环境的波动性,还设计了一种多模式混合的拥塞控制机制,该机制能在接近网络带宽阈值时切换到更平缓的增窗模式,及时调整策略以应对网络中可能出现的多种情况. 仿真实验的结果表明,HWCTC方法在动态且高丢包率的空天地立体化异构网络环境下,不仅提供了高质量的数据传输服务,且相比于经典的Cubic和Reno方法,实现了约61.5%的吞吐量提升,显著增强了数据传输的稳定性,有效减少了节点路由动态变化对传输性能的影响.
-
关键词:
- 传输控制 /
- 空天地立体化异构网络 /
- 路由更新 /
- 智融标识网络 /
- 拥塞控制机制
Abstract:To address the complex challenges posed by node heterogeneity and connectivity changes in integrated stereoscopic heterogeneous networks, we propose a transmission control method with bounded, loop-free, and blocking-free policy update capabilities. This method incorporates network routing algorithms into the transmission control framework through cross-layer cooperative control. The selection of routing update nodes is modeled as a node search problem, ensuring that the resources involved in network transmission are bounded. On this basis, a breadth-first heuristic incremental search algorithm is designed to efficiently update both global and local routing configurations, ensuring that new paths are loop-free and devoid of network black holes. Additionally, to adapt to the volatility of integrated stereoscopic heterogeneous networks, a multi-mode hybrid congestion control mechanism is designed. This mechanism can switch to a more gradual window-increase mode when approaching the network bandwidth threshold, promptly adjusting policies to handle various potential network conditions. Simulation results demonstrate that HWCTC method provides high-quality data transmission services in dynamic and high packet loss rate integrated space-air-ground heterogeneous network environments. Compared with the classical Cubic and Reno algorithms, HWCTC achieves approximately 61.5% improvement in throughput, significantly enhancing data transmission stability and effectively reducing the impact of dynamic node routing changes on transmission performance.
-
-
表 1 空天地立体化异构网络中不同传输控制方法的比较
Table 1 Comparison of Transmission Control Approaches in Integrated Space-Air-Ground Heterogeneous Networks
表 2 仿真环境下的空天地立体化异构网络详细参数
Table 2 Detailed Parameters of Integrated Air-Space-Ground Heterogeneous Network in Simulation Environment
实验参数 取值 地面节点数 5 无人机节点数 36 卫星节点数 12 卫星轨道高度/km 1460 单跳链路时延/ms 5~30 节点吞吐量/Mbps 20 数据包长度/B 512~ 1500 地面通信链路误码率 10−6~10−9 空中通信链路误码率 10−5~10−8 单次仿真时长/s 300 表 3 跳到跳与端到端确认机制的性能比较
Table 3 Comparison of Performance between Hop-by-Hop and End-to-End Acknowledgment Mechanisms
跳数 确认机制 成功率 确认开销 重传数据占比 5 跳到跳 (1−phop)5 ≈4.8% (1−ptotal)/5 5 端到端 (1−phop)5 ≈1.6% 1−ptotal 6 跳到跳 (1−phop)6 ≈5.6% (1−ptotal)/6 6 端到端 (1−phop)6 ≈1.6% 1−ptotal 7 跳到跳 (1−phop)7 ≈6.4% (1−ptotal)/7 7 端到端 (1−phop)7 ≈1.6% 1−ptotal -
[1] ITU-Radio communications sector. Future technology trends of terrestrial international mobile telecommunications systems towards 2030 and beyond, Report M. 2516−0 [R]. Geneva, Switzerland: International Telecommunication Union, 2022
[2] Liu Jiajia, Shi Yongpeng, Fadlullah Z M, et al. Space-air-ground integrated network: A survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2714−2741
[3] Floyd S, Fall K. Promoting the use of end-to-end congestion control in the Internet[J]. IEEE/ACM Transactions on Networking, 1999, 7(4): 458−472 doi: 10.1109/90.793002
[4] Li Ye, Chen Liang, Su Li, et al. Pepesc: A TCP performance enhancing proxy for non-terrestrial networks[J]. IEEE Transactions on Mobile Computing, 2023, 23(4): 3060−3076
[5] Zhang Peiying, Chen Ning, Shen Shigen, et al. AI-enabled space-air-ground integrated networks: Management and optimization[J]. IEEE Network, 2023, 1(4): 1−7
[6] He Jingchao, Cheng Nan, Yin Zhisheng, et al. Service-oriented network resource orchestration in space-air-ground integrated network[J]. IEEE Transactions on Vehicular Technology, 2024, 73(1): 1162−1174 doi: 10.1109/TVT.2023.3301676
[7] 张宏科,冯博昊,权伟. 智融标识网络基础研究[J]. 电子学报,2019,47(5):977−982 doi: 10.3969/j.issn.0372-2112.2019.05.001 Zhang Hongke, Feng Bohao, Quan Wei. Fundamental research on smart integrated network[J]. Acta Electronica Sinica, 2019, 47(5): 977−982 (in Chinese) doi: 10.3969/j.issn.0372-2112.2019.05.001
[8] Deng Xia, Chang Le, Zeng Shouyuan, et al. Distance-based back-pressure routing for load-balancing LEO satellite networks[J]. IEEE Transactions on Vehicular Technology, 2023, 72(1): 1240−1253 doi: 10.1109/TVT.2022.3206616
[9] Cao Xuelin, Yang Bo, Yuen Chau, et al. HAP-reserved communications in space-air-ground integrated networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(8): 8286−8291 doi: 10.1109/TVT.2021.3090760
[10] Huang Chong, Chen Gaojie, Xiao Pei, et al. Joint offloading and resource allocation for hybrid cloud and edge computing in SAGINs: A decision assisted hybrid action space deep reinforcement learning approach[J]. IEEE Journal on Selected Areas in Communications, 2024, 42(5): 1029−1043 doi: 10.1109/JSAC.2024.3365899
[11] Bankey V, Sharma S, Ramabadran S, et al. Physical layer security of HAPS-based space–air–ground-integrated network with hybrid FSO/RF communication[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 4680−4688 doi: 10.1109/TAES.2022.3233339
[12] Cheng Nan, Quan Wei, Shi Weisen, et al. A comprehensive simulation platform for space-air-ground integrated network[J]. IEEE Wireless Communications, 2020, 27(1): 178−185 doi: 10.1109/MWC.001.1900072
[13] Tang Fengxiao, Wen Cong, Chen Xuehan, et al. Federated learning for intelligent transmission with space-air-ground integrated network toward 6G[J]. IEEE Network, 2023, 37(2): 198−204 doi: 10.1109/MNET.104.2100615
[14] Liu Dong, Zhang Jiankang, Cui Jingjing, et al. Deep learning aided routing for space-air-ground integrated networks relying on real satellite, flight, and shipping data[J]. IEEE Wireless Communications, 2022, 29(2): 177−184 doi: 10.1109/MWC.003.2100393
[15] Eiza M H, Raschellà A. A hybrid SDN-based architecture for secure and QoS aware routing in space-air-ground integrated networks (SAGINs)[C]//Proc of IEEE Wireless Communications and Networking Conf. Piscataway, NJ: IEEE, 2023: 1−6
[16] Yang Yunshan, Dai Lin. Stability region and transmission control of multi-cell Aloha networks[J]. IEEE Transactions on Communications, 2023, 71(9): 5348−5364 doi: 10.1109/TCOMM.2023.3287538
[17] Henderson T R, Katz R H. Transport protocols for Internet-compatible satellite networks[J]. IEEE Journal on Selected Areas in Communications, 1999, 17(2): 326−344 doi: 10.1109/49.748815
[18] Irio L, Oliveira R, Bernardo L. Aggregate interference in random waypoint mobile networks[J]. IEEE Communications Letters, 2015, 19(6): 1021−1024 doi: 10.1109/LCOMM.2015.2416718
[19] Abbasloo S, Yen Chen-Yu, Chao H J. Classic meets modern: A pragmatic learning-based congestion control for the Internet[C]//Proc of the Annual Conf of the ACM Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM’20). New York: Association for Computing Machinery, 2020: 632–647
[20] Cardwell N, Cheng Yuchung, Gunn C S, et al. BBR: Congestion-based congestion control[J]. Communications of the ACM, 2017, 60(2): 58−66 doi: 10.1145/3009824
[21] Kim Y, Park H, Kim J H, et al. Fairness PEP solution for satellite TCP[C]//Proc of Int Conf on Ubiquitous and Future Networks. Piscataway, NJ: IEEE, 2015: 83−85
[22] Lee K H, Jang D H, Kim Y S, et al. Adaptive PEP based on location information for SOTM networks[C]//Proc of Int Conf on Information and Communication Technology Convergence (ICTC). Piscataway, NJ: IEEE, 2016: 211−213
[23] 于成晓. 智融标识网络下异构多路协同传输机制研究[D]. 北京: 北京交通大学,2023 Yu Chengxiao. Research on heterogeneous multi-path cooperative transmission mechanism under smart integrated network[D]. Beijing: Beijing Jiaotong University, 2023 (in Chinese).
[24] Sheng Min, Zhou Di, Liu Runzi, et al. Resource mobility in space information networks: Opportunities, challenges, and approaches[J]. IEEE Network, 2018, 33(1): 128−135
[25] Du Jun, Jiang Chunxiao, Zhang Haijun, et al. Auction design and analysis for SDN-based traffic offloading in hybrid satellite-terrestrial networks[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(10): 2202−2217 doi: 10.1109/JSAC.2018.2869717
[26] Guo Chao, Gong Cheng, Xu Haitao, et al. A dynamic handover software-defined transmission control scheme in space-air-ground integrated networks[J]. IEEE Transactions on Wireless Communications, 2022, 21(8): 6110−6124 doi: 10.1109/TWC.2022.3146452
[27] Peng Yang, Juan Shao, Wen Luo, et al. TCP congestion avoidance algorithm identification[J]. IEEE/ACM Transactions on Networking, 2014, 22(4): 1311−1324 doi: 10.1109/TNET.2013.2278271
[28] Cui Yukang, Chen Yaoqi, Yang Dong, et al. Resilient formation tracking of spacecraft swarm against actuation attacks: A distributed lyapunov-based model predictive approach[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(11): 7053−7065 doi: 10.1109/TSMC.2023.3292426
[29] Li Ye, Feng Ru, Gao Ruifeng, et al. Fountain coded streaming for SAGIN with learning-based pause-and-listen[J]. IEEE Networking Letters, 2023, 5(1): 36−40 doi: 10.1109/LNET.2022.3227541
-
期刊类型引用(13)
1. 张鑫,张晗,牛曼宇,姬莉霞. 计算机视觉领域对抗样本检测综述. 计算机科学. 2025(01): 345-361 . 百度学术
2. 张少杰,赵李强,周静波,陈国坤,焦宗寒,杨伟,王欣,刘荣海. 电力行业无人机巡检可见光图像与激光点云数据配准方法研究. 云南电力技术. 2024(02): 70-73+80 . 百度学术
3. 顾芳铭,况博裕,许亚倩,付安民. 面向自动驾驶感知系统的对抗样本攻击研究综述. 信息安全研究. 2024(09): 786-794 . 百度学术
4. 武阳,刘靖. 面向图像分析领域的黑盒对抗攻击技术综述. 计算机学报. 2024(05): 1138-1178 . 百度学术
5. 郭凯威,杨奎武,张万里,胡学先,刘文钊. 面向文本识别的对抗样本攻击综述. 中国图象图形学报. 2024(09): 2672-2691 . 百度学术
6. 徐宇晖,潘志松,徐堃. 面向三种形态图像的对抗攻击研究综述. 计算机科学与探索. 2024(12): 3080-3099 . 百度学术
7. 秦书晨,王娟,朱倪宏,陈杨. 图像对抗样本检测与防御方法研究进展. 智能安全. 2024(04): 81-95 . 百度学术
8. 罗鑫,夏学知. 面向图像识别的对抗样本与攻击研究. 舰船电子工程. 2023(02): 22-29+33 . 百度学术
9. 杨宏宇,杨帆. 基于图像去噪和图像生成的对抗样本检测方法. 湖南大学学报(自然科学版). 2023(08): 72-81 . 百度学术
10. 张万里,陈越,杨奎武,张田,胡学先. 一种局部遮挡人脸识别的对抗样本生成方法. 计算机研究与发展. 2023(09): 2067-2079 . 本站查看
11. 刘瑞祺,李虎,王东霞,赵重阳,李博宇. 图像对抗样本防御技术研究综述. 计算机科学与探索. 2023(12): 2827-2839 . 百度学术
12. 梁杰,彭长根,谭伟杰,何兴. 基于梯度惩罚WGAN的人脸对抗样本生成方法. 计算机与数字工程. 2023(11): 2659-2665 . 百度学术
13. 李前,蔺琛皓,杨雨龙,沈超,方黎明. 云边端全场景下深度学习模型对抗攻击和防御. 计算机研究与发展. 2022(10): 2109-2129 . 本站查看
其他类型引用(17)