-
摘要:
无线充电技术具有非接触、自动化以及易维护的供能特性,可以有效解决未来智能物联网(AIoT)在大规模应用时的能量供应难题. 在现有无线充电技术中,磁共振无线充电技术在能量传输效用与空间自由度上有着更为均衡的技术优势,已成为当今无线充电领域的研究热点,拥有更为广阔的应用前景. 为此,大致回顾了磁共振无线充电技术的发展历程并对其相关背景概念进行了简要概述. 对近年的磁共振无线充电技术相关研究进行了系统梳理,并基于设计动机和技术实现从反馈通信、优化调度、感知应用、安全保障4个角度出发,详细总结了对应工作的基本原理、实施方法等核心内容,为后续的研究提供了有效参考. 其中,根据传输方式将反馈通信方面工作分为两大类,根据系统结构将优化调度方面工作分为两大类,根据应用场景从三大类介绍感知应用方面工作,根据保障对象将安全保障方面工作分为三大类. 最后在上述工作的基础上,讨论了磁共振无线充电技术现有工作的可改进之处,并对未来研究方向进行了展望.
Abstract:Wireless charging has the characteristics of no wiring, automation, and ease of maintenance, which can effectively solve the energy supply problem for the future large-scale application of artificial intelligence of things (AIoT). Magnetic resonant coupling wireless charging technology has more balanced technical advantages in terms of spatial freedom and energy transfer efficiency, and has become a research hotspot in the field of wireless charging today, with broader application prospects. In this paper, the development history of magnetic resonant coupling wireless charging technology is reviewed, and the related background concepts are briefly summarized. A systematic review of recent work on magnetic resonant coupling wireless charging technology is carried out, and based on the design motivation and technical realization, the basic principles and implementation methods of the corresponding research are summarized in detail from the four perspectives of feedback communication, optimization scheduling, sensing application and radiation safety guarantee, providing an effective reference for subsequent research. Specifically, feedback communication work is categorized into two main types according to transmission mode, optimization scheduling work is classified into two main types based on system structure, and sensing applications are introduced from three main categories according to application scenario. Finally, based on the aforementioned work, we discuss areas for improvement in the current magnetic resonant coupling wireless charging technology and explore future research directions.
-
-
表 1 反馈通信工作对比
Table 1 Comparison of Feedback Communication Work
通道利用方式 物理传输方式 来源 RX端调制方式 TX端解码方式 要点 缺陷 带外 串行 文献[7] 高斯频移 键控 额外配置蓝牙无线电模块 硬件成本增加,造成额外的
能量消耗及频谱占用带内 串行 文献[8] OOK 基于脉冲宽带 将OOK调制方式用于MRC-WPT
系统进行反馈通信同时仅支持单个RX进行反馈通信 文献[9] OOK 基于电流 利用通信中继现象扩展通信距离 并行 文献[10] OOK 基于电流聚类 最多支持5个设备的并行反馈通信 需预先观测大量不同RX
开关通断组合状态文献[11] OOK 基于电流 支持数十个设备的并行反馈通信 忽略了RX间互感 文献[12] 高低阻抗+OOK 基于信道矩阵 综合考虑强耦合干扰及通信中继现象 未考虑保障通信的可靠性 表 2 两线圈结构MRC-WPT系统优化调度工作对比
Table 2 Comparison of Optimization Scheduling Work for Two-Coil MRC-WPT System
调整对象 来源 模型 研究动机 能量传输距离/cm 最佳传输效率或功率 实验原型接收设备数 TX电流/电压 文献[8] MISO 引入无线通信领域MIMO波束成形技术 40 89% 1 文献[14] MIMO 为支持多设备同时充电 50 90% 6 文献[15] MIMO 考虑互感信息存在误差以提升波束成形鲁棒性 10 69.6% 4 文献[16] MIMO 避免获取互感信息以降低实施成本 30 4.4 W 1 文献[17] MIMO 应对不同接收设备具有不同能量需求的情况 20 34% 4 文献[7] MIMO 考虑TX端电路约束并权衡多个用户间性能 10 77.3% 4 系统频率 文献[18] SIMO /MISO 研究TX间或RX间耦合对系统性能的影响 31 57% 1或2 文献[19] SISO 研究TX与RX不同耦合状态下频率的影响 70 70% 1 文献[20] MIMO 进行MIMO场景下频率调节以优化系统性能 30 2.5 W 6 TX线圈 几何结构 文献[21] SISO 减少线圈间寄生耦合 4 2.5 W 1 文献[22] MISO 非耦合线圈模式以降低波束成形实现复杂度 96% 1 文献[23] MIMO 在TX端周围整个空间中提供准均匀充电效率 15 70.53% 8 文献[24] MIMO 设计大小可调线圈以调节TX-RX间耦合 50 80.78 W 8 方位 文献[25] MIMO 考虑TX方位自适应调整 60 15 W 6 位置 文献[26] MISO 部署TX位置以实现均匀的能量覆盖 20 25.54 W 1 阻抗 TX阻抗 文献[27] MIMO 构建使用电容阵列的自动阻抗匹配网络 20 90.6% 1 RX阻抗 文献[28] SISO 推导优化系统能量传输的最佳负载条件 77.4 94% 1 文献[29] MISO 结合RX端负载阻抗优化及TX端电压调度 91% 1 文献[30] SIMO 进行集中式/分布式RX端负载阻抗优化 160 60% 3 文献[24] MIMO 观察到强耦合RX对难以获取到足够能量 50 80.78 W 8 文献[31] MIMO RX分组方案影响系统负载获能总量 5 14 W 12 表 3 三线圈结构MRC-WPT系统优化调度工作对比
Table 3 Comparison of Optimization Scheduling Work for Three-Coil MRC-WPT System
角度 来源 研究对象 场景 具体内容 能量传输距离/cm 最佳传输效率/功率 实验原型接收设备数 参数优化 文献[33] 系统频率及TX端与中继间互感 SI-单中继-SO 分析三线圈结构优于两线圈结构的理论条件 3 65% 1 文献[34] 中继方位 SI-单中继-SO 探讨中继方位对能量传输效率的影响 200 90% 文献[35] 中继位置 SI-单中继-SO 研究TX端和RX端之间一个中继的最佳位置 5.5 53% 文献[36] 中继数量及位置 SI-多中继-SO 优化继电器数量与位置以最大化能量传输效率 80 63%/1 W 文献[37] 中继电容 SI-多中继-SO 调整中继电容以在系统频率下提升能量传输效率 120 51.6% 文献[38] 中继位置 SI-多中继-SO 在中继非对称情况下优化中继位置 90 98% 文献[39] 中继电容及位置 SI-多中继-SO 确定最佳中继电容及位置以实现非对称中继下
能量传输效率最大化75 80% 硬件设计 文献[40] 可重构2D平面 SI-多中继-MO 利用多跳中继实现水平方向上的充电距离扩展 130 46.7% 2 文献[41] 超表面 SI-多中继-SO 利用超材料以提升系统能量传输效率 50 47%/40 W 1 文献[42] 能量模式可重配置超表面 SI-多中继-MO 设计双层架构实现高粒度塑造能量场 45 92.8% 2 文献[43] 可重构超表面 MI-多中继-MO 调控超表面特定线圈阵列单元中的电容器和
电阻实现波束成形40 91% 2 文献[44] 可调谐超表面 SI-多中继-SO 固定频率下调谐系统电容以实现最佳耦合 8 2.6% 1 能量路由 文献[45] 能量路由及电流调度 MI-多中继-MO 联合中继能量路由和TX端电流调度以
最大化能量传输效率60 74% 6 表 4 异物检测工作对比
Table 4 Comparison of Foreign Object Detection Work
方式 对象 来源 依据 具体内容 可检测对象 基于参
数变化MO 文献[56] MO影响TX端电压 测量输入电流及电压基频振幅以实时估计感应电压 距收发线圈5 cm处半径
1.5 cm铝盘文献[57] MO影响TX端电压与电流相位差 监测全桥逆变器输出电压与输出电流间的相位差 收发端20 cm气隙间易拉罐/铁杯/锅 文献[58] MO影响谐振频率 综合监测TX端谐振频率偏差及电流 收发端20 cm气隙间硬币/易拉罐 文献[59] MO影响RX端品质因数 测量RX端品质因数 收发端1 cm气隙间硬币/回形针 文献[60] MO影响TX端逆变器电流 采集TX端逆变器电流并设计特征提取分类器 收发端15 cm气隙间易拉罐 文献[61] MO影响反射系数参数 构建基于反射系数参数检测异物的神经网络 收发端18 cm气隙间铜板/
装水塑料瓶基于
传感器LO 文献[62] LO存在微小运动 基于雷达传感器并应用二维信号处理技术 1.5 m×1.5 m范围内LO 道路异物 文献[63] 道路异物视觉可见 配备相机并采用实时图像处理技术 道路异物 LO 文献[64] LO影响电容传感器电容 利用电容传感器检测LO引起的电容变化 10 cm范围内LO MO+LO 文献[65] MO、LO发热 使用实时热成像仪采集充电区域图像 铝罐/硬币/螺丝/模拟手 MO+LO 文献[66] 物体高光谱特性高度依赖于其材料 基于高光谱成像技术及支持向量机模型 半径0.3 cm金属垫圈 MO 文献[67] MO导致磁场偏移 利用隧道磁阻传感器测量磁场分布 收发端8 cm气隙间3 cm螺栓 基于辅
助线圈MO 文献[68] MO影响辅助线圈电压 采集辅助线圈交流电压信号峰值 收发端10 cm气隙间直径和
高度3.5 cm铝圆柱文献[69] 检测辅助线圈感应电压是否超出阈值 收发端5 cm气隙间
3 cm×3 cm×0.5 mm铜片文献[70] 基于辅助线圈电压向量分解 收发端10 cm气隙间
1.3 cm×1.3 cm×4 mm硬币文献[71] MO造成电磁模型异常 量化电磁模型偏差 收发端20 cm气隙间约128 g铝罐 表 5 3种异物检测方法对比
Table 5 Comparison of Three Foreign Object Detection Methods
方法 优势 劣势 基于参数变化 简单易行、成本低、不占用额外
空间受系统功率、TX端与RX端错位、充电状态等因素影响 基于传感器 高度敏感,独立于WPT系统功
率水平、工作频率等,不受错位影响高成本,安装难度较高,受环境影响,占用空间 基于辅助线圈 高度敏感,高精度,可避免错位影响,独立于WPT系统功率水平 辅助线圈需精心设计在系统通电时才有效 表 6 追踪定位工作对比
Table 6 Comparison of Tracking and Positioning Work
场景 定位维度 来源 系统结构 依据 常规
MRC-WPT
系统二维 文献[85] 2-TXs 1-RX RX位置变化影响2个TX正向/反射功率的相位与幅度差异 文献[86] 1-TX 1-中继 1-RX RX位置变化影响其与TX和
中继间耦合进而改变相应电流三维 文献[87] TX阵列 1-RX 给定高度下耦合仅受TX和RX线圈之间横向错位影响 电动汽车错位避免 三维 文献[88] 1-TX 1-RX
4-辅助线圈RX位置变化影响耦合进而改变4个辅助线圈电压 人体运动跟踪 二维 文献[89] 1-TX RX阵列
1-目标谐振线圈谐振线圈将导致对应RX线圈与TX线圈间耦合增强进而影响RX线圈阵列感应电压 三维 文献[90] 1-TX(3线圈)
1-RX(3线圈)RX不同位置对应着不同的3×3维接收矩阵 文献[91] 1-驱动线圈
15-调谐线圈
拾波线圈阵列每个调谐线圈具有特定谐振频率
经拾波线圈采集信号并进行反演求解医疗设备定位 二维 文献[92] 体内定位器
(2线圈)
体外1-TX 1-RXTX发送信号至定位器,经频率偏移后传送回RX,记录并对比各可能位置接收光谱峰平均值以定位坐标 文献[93] 体外TX阵列
体内 1-RXRX位置变化影响耦合系数进而改变TX电压 三维 文献[94] 体内标签(1线圈)
体外2-TXs 2-RXs标签位置变化影响耦合进而
改变RX线圈接收信号强度文献[95] 体外2-TXs
体内1-RX(3线圈)RX位置变化影响耦合进而改变RX电流强度 表 7 隐私安全工作对比
Table 7 Comparison of Privacy Security Work
-
[1] 国际数据公司. IDC: 中国物联网市场支出逐步攀升,预计2027年将位列全球第一[EB/OL]. (2023-07-17)[2024-05-28].https://www.idc.com/getdoc.jsp?containerId=prCHC51041723 International Data Corporation. IDC: China’s IoT Market Spending Continues to Rise, Projected to Rank First Globally by 2027[EB/OL]. (2023-07-17)[2024-05-28].https://www.idc.com/getdoc.jsp?containerId=prCHC51041723 (in Chinese)
[2] Riad K, Huang Teng, Ke Lishan. A dynamic and hierarchical access control for IoT in multi-authority cloud storage[J]. Journal of Network and Computer Applications, 2020, 160: 102633
[3] Wang Dean, Zhang Jiantao, Cui Shumei, et al. Modern advances in magnetic materials of wireless power transfer systems: A review and new perspectives[J]. Nanomaterials, 2022, 12(20): No. 3662
[4] Liu Zhe, Li Tong, Li Siqi, et al. Advancements and challenges in wireless power transfer: A comprehensive review[J/OL]. Nexus, 2024 [2024-07-04]. https://www.cell.com/nexus/fulltext/S2950-1601(24)00012-3
[5] Alabsi A, Hawbani A, Wang Xingfu, et al. Wireless power transfer technologies, applications, and future trends: A review[J/OL]. IEEE Transactions on Sustainable Computing, 2024 [2024-07-04]. https://ieeexplore.ieee.org/abstract/document/10478158
[6] Abou Houran M, Yang Xu, Chen Wenjie. Magnetically coupled resonance WPT: Review of compensation topologies, resonator structures with misalignment, and EMI diagnostics[J]. Electronics, 2018, 7(11): No. 296
[7] Yang Gang, Moghadam M R V, Zhang Rui. Magnetic MIMO signal processing and optimization for wireless power transfer[J]. IEEE Transactions on Signal Processing, 2017, 65(11): 2860−2874
[8] Jadidian J, Katabi D. Magnetic MIMO: How to charge your phone in your pocket[C]//Proc of the 20th Annual Int Conf on Mobile Computing and Networking. New York: ACM, 2014: 495−506
[9] Liang Xiaolun, Zhou Hao, Zhou Wangqiu, et al. Onion: Dependency-aware reliable communication protocol for magnetic mimo wpt system[C]//Proc of 2021 IEEE 27th Int Conf on Parallel and Distributed Systems. Piscataway, NJ: IEEE, 2021: 458−465
[10] Hua Wenxiong, Cui Xiang, Zhou Hao, et al. Parallel feedback communications for magnetic mimo wireless power transfer system[C]//Proc of 2019 16th Annual IEEE Int Conf on Sensing, Communication, and Networking. Piscataway, NJ: IEEE, 2019: 1−9
[11] Zhou Hao, Chen Zhao, Zhou Wangqiu, et al. Camel: Context-aware magnetic MIMO wireless power transfer with in-band communication[C]//Proc of IEEE Conf on Computer Communications (IEEE INFOCOM 2021). Piscataway, NJ: IEEE, 2021: 1−10
[12] Zhou Wangqiu, Zhou Hao, Cui Xiang, et al. Roland: Robust in-band parallel communication for magnetic MIMO wireless power transfer system[C]//Proc of IEEE Conf on Computer Communications (IEEE INFOCOM 2023). Piscataway, NJ: IEEE, 2023: 1−10
[13] Alliance A. Airfuel resonant wireless power transfer (WPT) system baseline system specification (BSS)[R]. Geneva: AirFuel Alliance, 2017
[14] Shi Lixin, Kabelac Z, Katabi D, et al. Wireless power hotspot that charges all of your devices[C]//Proc of the 21st Annual Int Conf on Mobile Computing and Networking. New York: ACM, 2015: 2−13
[15] Zhang Yixin, Chen Da, Jiang Tao. Robust beamforming design for magnetic MIMO wireless power transfer systems[J]. IEEE Transactions on Signal Processing, 2021, 69: 5066−5077
[16] Zhao Yubin, Li Xiaofan, Xu Chengzhong, et al. Random beamforming for multi-coil magnetic resonance wireless power transfer system[C]//Proc of 2018 IEEE Wireless Power Transfer Conf. Piscataway, NJ: IEEE, 2018: 1−4
[17] Cao Guodong, Zhou Hao, Zhang Hangkai, et al. Requirement-driven magnetic beamforming for MIMO wireless power transfer optimization[C]//Proc of 2018 15th Annual IEEE Int Conf on Sensing, Communication, and Networking. Piscataway, NJ: IEEE, 2018: 1−9
[18] Ahn D, Hong S. Effect of coupling between multiple transmitters or multiple receivers on wireless power transfer[J]. IEEE Transactions on Industrial Electronics, 2012, 60(7): 2602−2613
[19] Sample A P, Meyer D T, Smith J R. Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer[J]. IEEE Transactions on Industrial Electronics, 2010, 58(2): 544−554
[20] Cui Xiang, Zhou Hao, Deng Jialin, et al. Mag-E4E: Trade efficiency for energy in magnetic mimo wireless power transfer system[C]//Proc of IEEE Conf on Computer Communications (IEEE INFOCOM 2022). Piscataway, NJ: IEEE, 2022: 440−449
[21] Ghotbi I, Najjarzadegan M, Sarfaraz H, et al. Enhanced power-delivered-to-load through planar multiple-harmonic wireless power transmission[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65(9): 1219−1223
[22] Kim K, Kim H J, Choi J W. Magnetic beamforming with non-coupling coil pattern for high efficiency and long distance wireless power transfer[C]//Proc of 2017 IEEE Wireless Power Transfer Conf. Piscataway, NJ: IEEE, 2017: 1−4
[23] Wang N X, Wang Hanwei, Mei Jie, et al. Robust 3-D wireless power transfer system based on rotating fields for multi-user charging[J]. IEEE Transactions on Energy Conversion, 2020, 36(2): 693−702
[24] Zhou Wangqiu, Zhou Hao, Cui Xiang, et al. IMeP: Impedance matching enhanced power-delivered-to-load optimization for magnetic MIMO wireless power transfer system[J]. ACM Transactions on Sensor Networks, 2023, 19(4): 1−25
[25] Guo Weiming, Wang Zhan, Zhou Hao, et al. DPDA: Distributed probability-adaptive direction adjustment for magnetic wireless power transfer[C]//Proc of 2023 20th Annual IEEE Int Conf on Sensing, Communication, and Networking. Piscataway, NJ: IEEE, 2023: 142−150
[26] Moghadam M R V, Zhang Rui. Node placement and distributed magnetic beamforming optimization for wireless power transfer[J]. IEEE Transactions on Signal and Information Processing over Networks, 2017, 4(2): 264−279
[27] Zhao Yubin, Li Xiaofan, Xu Chengzhong, et al. Smart multi-coil-based magnetic resonance prototype for wireless power transfer[C]//Proc of 2018 IEEE Wireless Power Transfer Conf. Piscataway, NJ: IEEE, 2018: 1−4
[28] Seo D W, Lee J H, Lee H S. Study on two-coil and four-coil wireless power transfer systems using Z-parameter approach[J]. Etri Journal, 2016, 38(3): 568−578
[29] Kim K, Kim H J, Choi J W. Load impedance optimization of magnetic beamforming wireless power transfer[C]//Proc of 2017 Int Conf on Information and Communication Technology Convergence. Piscataway, NJ: IEEE, 2017: 190−192
[30] Moghadam M R V, Zhang Rui. Multiuser wireless power transfer via magnetic resonant coupling: Performance analysis, charging control, and power region characterization[J]. IEEE Transactions on Signal and Information Processing over Networks, 2015, 2(1): 72−83
[31] Tang Lulu, Zhou Hao, Guo Weiming, et al. IMRG: Impedance matching oriented receiver grouping for MIMO WPT system[C]//Proc of 2022 18th Int Conf on Mobility, Sensing and Networking. Piscataway, NJ: IEEE, 2022: 692−699
[32] Zhang Fei, Hackworth S A, Fu Weinong, et al. Relay effect of wireless power transfer using strongly coupled magnetic resonances[J]. IEEE Transactions on Magnetics, 2011, 47(5): 1478−1481
[33] Zhong Wenxing, Zhang Chenghui, Liu Xun, et al. A methodology for making a three-coil wireless power transfer system more energy efficient than a two-coil counterpart for extended transfer distance[J]. IEEE Transactions on Power Electronics, 2014, 30(2): 933−942
[34] Kim J W, Son H C, Kim K H, et al. Efficiency analysis of magnetic resonance wireless power transfer with intermediate resonant coil[J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10: 389−392
[35] Zhang Xiu, Ho S L, Fu Weinong. Quantitative design and analysis of relay resonators in wireless power transfer system[J]. IEEE transactions on Magnetics, 2012, 48(11): 4026−4029
[36] Ahn D, Hong S. A study on magnetic field repeater in wireless power transfer[J]. IEEE Transactions on Industrial Electronics, 2012, 60(1): 360−371
[37] Kim J H, Park B C, Lee J H. Optimum design of WPT relay system by controlling capacitance[J]. Microwave and Optical Technology Letters, 2014, 56(7): 1658−1661
[38] Kim J H, Park B C, Lee J H. New analysis method for wireless power transfer system with multiple n resonators[J]. Journal of Electromagnetic Engineering and Science, 2013, 13(3): 173−177
[39] Choi B H, Lee J H. Design of asymmetrical relay resonators for maximum efficiency of wireless power transfer[J]. International Journal of Antennas and Propagation, 2016, 2016(1): 8247476
[40] Sumiya K, Sasatani T, Nishizawa Y, et al. Alvus: A reconfigurable 2-D wireless charging system[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2019, 3(2): 1−29
[41] Wang Bingnan, Teo K H, Nishino T, et al. Experiments on wireless power transfer with metamaterials[J]. Applied Physics Letters, 2011, 98(25): 254101
[42] Li Kai, Naderi M Y, Muncuk U, et al. MetaResonance—A reconfigurable surface for holographic wireless power transfer[J]. IEEE Transactions on Industrial Electronics, 2022, 70(5): 4682−4692
[43] Li Zhangyu, Sun Zhi. Enabling magnetic beamforming in MIMO wireless power transfer using reconfigurable metasurface[C]//Proc of 2020 IEEE Global Communications Conf (GLOBECOM 2020). Piscataway, NJ: IEEE, 2020: 1−6
[44] Li Maoyuan, Khaleghi A, Hasanvand A, et al. A new design and analysis for metasurface-based near-field magnetic wireless power transfer for deep implants[J]. IEEE Transactions on Power Electronics, 2024, 39(5): 6442−6454
[45] Zhou Hao, Deng Jialin, Hua Wenxiong, et al. PROCS: Power routing and current scheduling in multi-relay magnetic MIMO WPT system[J]. IEEE Transactions on Mobile Computing, 2021, 22(3): 1702−1716
[46] Meng Weizhi, Li Wenjuan, Jiang Lijun, et al. On multiple password interference of touch screen patterns and text passwords[C]//Proc of the 2016 CHI Conf on Human Factors in Computing Systems. New York: ACM, 2016: 4818−4822
[47] Seo S H, Gupta A, Sallam A M, et al. Detecting mobile malware threats to homeland security through static analysis[J]. Journal of Network and Computer Applications, 2014, 38: 43−53
[48] Li Mengyuan, Meng Yan, Liu Junyi, et al. When CSI meets public WiFi: Inferring your mobile phone password via WiFi signals[C]//Proc of the 2016 ACM SIGSAC Conf on Computer and Communications Security. New York: ACM, 2016: 1068−1079
[49] Cheng Yushi, Ji Xiaoyu, Zhang Juchuan, et al. DeMiCPU: Device fingerprinting with magnetic signals radiated by CPU[C]//Proc of the 2019 ACM SIGSAC Conf on Computer and Communications Security. New York: ACM, 2019: 1149−1170
[50] Xu Xiangyu, Yu Jiadi, Chen Yingying, et al. TouchPass: Towards behavior-irrelevant on-touch user authentication on smartphones leveraging vibrations[C]//Proc of the 26th Annual Int Conf on Mobile Computing and Networking. New York: ACM, 2020: 1−13
[51] Baldini G, Steri G. A survey of techniques for the identification of mobile phones using the physical fingerprints of the built-in components[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1761−1789
[52] Wireless Power Consortium. Qi: Mobile charging empowered[EB/OL]. [2024-05-28]. https://www.wirelesspowerconsortium.com/standards/qi-wireless-charging/
[53] Wu Yi, Li Zhuohang, Van Nostrand N, et al. Time to rethink the design of qi standard? security and privacy vulnerability analysis of Qi wireless charging[C]//Proc of the 37th Annual Computer Security Applications Conf. New York: ACM, 2021: 916−929
[54] Zhang Jiayu, Wang Zhiyun, Ji Xiaoyu, et al. Who is charging my phone? identifying wireless chargers via fingerprinting[J]. IEEE Internet of Things Journal, 2020, 8(4): 2992−2999
[55] Li Jiachun, Meng Yan, Zhang Le, et al. MagFingerprint: A magnetic based device fingerprinting in wireless charging[C]//Proc of IEEE Conf on Computer Communications (IEEE INFOCOM 2023). Piscataway, NJ: IEEE, 2023: 1−10
[56] Pucci N, Arteaga J M, Kwan C H, et al. Induced voltage estimation from class ef switching harmonics in HF-IPT systems[J]. IEEE Transactions on Power Electronics, 2021, 37(4): 4903−4916
[57] Huang S J, Su J L, Dai S H, et al. Enhancement of wireless power transmission with foreign-object detection considerations[C]//Proc of 2017 IEEE 6th Global Conf on Consumer Electronics. Piscataway, NJ: IEEE, 2017: 1−2
[58] Jafari H, Moghaddami M, Sarwat A I. Foreign object detection in inductive charging systems based on primary side measurements[J]. IEEE Transactions on Industry Applications, 2019, 55(6): 6466−6475
[59] Fukuda S, Nakano H, Murayama Y, et al. A novel metal detector using the quality factor of the secondary coil for wireless power transfer systems[C]//Proc of 2012 IEEE MTT-S Int Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications. Piscataway, NJ: IEEE, 2012: 241−244
[60] Li Sheng, Li Haoze, Wu Zhijun, et al. Foreign object detection for LCC-S wireless power transfer system based on LSTM[C]//Proc of 2021 IEEE Int Conf on Emergency Science and Information Technology. Piscataway, NJ: IEEE, 2021: 165−169
[61] Ote M, Jeong S, Tentzeris M M. Foreign object detection for wireless power transfer based on machine learning[C]//Proc of 2020 IEEE Wireless Power Transfer Conf. Piscataway, NJ: IEEE, 2020: 476−479
[62] Poguntke T, Schumann P, Ochs K. Radar-based living object protection for inductive charging of electric vehicles using two-dimensional signal processing[J]. Wireless Power Transfer, 2017, 4(2): 88−97
[63] Azad A, Kulyukin V, Pantic Z. Misalignment tolerant DWPT charger for EV roadways with integrated foreign object detection and driver feedback system[C]//Proc of 2019 IEEE Transportation Electrification Conf and Expo. Piscataway, NJ: IEEE, 2019: 1−5
[64] Jeong S Y, Kwak H G, Jang G C, et al. Living object detection system based on comb pattern capacitive sensor for wireless EV chargers[C]//Proc of 2016 IEEE 2nd Annual Southern Power Electronics Conf. Piscataway, NJ: IEEE, 2016: 1−6
[65] Sonnenberg T, Stevens A, Dayerizadeh A, et al. Combined foreign object detection and live object protection in wireless power transfer systems via real-time thermal camera analysis[C]//Proc of 2019 IEEE Applied Power Electronics Conf and Exposition. Piscataway, NJ: IEEE, 2019: 1547−1552
[66] Tian Yong, Li Zheng, Lin Yawen, et al. Metal object detection for electric vehicle inductive power transfer systems based on hyperspectral imaging[J]. Measurement, 2021, 168(15): 108493
[67] Liu Xuyang, Liu Chunhua, Han Wei, et al. Design and implementation of a multi-purpose TMR sensor matrix for wireless electric vehicle charging[J]. IEEE Sensors Journal, 2018, 19(5): 1683−1692
[68] Gong Y, Otomo Y, Igarashi H. Neural network for both metal object detection and coil misalignment prediction in wireless power transfer[J]. IEEE Transactions on Magnetics, 2022, 58(9): 1−4
[69] Zhong Wenxing, Xiang Fei, Hu Changsheng. Metal object detection with detection coils perpendicular to power coils for wireless power transfer systems[J]. IEEE Transactions on Power Electronics, 2023, 38(9): 10530−10534
[70] Niu Songyan, Zhang Cheng, Shi Yujun, et al. Foreign object detection considering misalignment effect for wireless EV charging system[J]. ISA transactions, 2022, 130: 655−666
[71] Chu S Y, Zan X, Avestruz A T. Electromagnetic model-based foreign object detection for wireless power transfer[J]. IEEE Transactions on Power Electronics, 2021, 37(1): 100−113
[72] Thai V X, Jang G C, Jeong S Y, et al. Symmetric sensing coil design for the blind-zone free metal object detection of a stationary wireless electric vehicles charger[J]. IEEE Transactions on Power Electronics, 2019, 35(4): 3466−3477
[73] Jeong S Y, Kwak H G, Jang G C, et al. Dual-purpose nonoverlapping coil sets as metal object and vehicle position detections for wireless stationary EV chargers[J]. IEEE Transactions on Power Electronics, 2017, 33(9): 7387−7397
[74] Jang G C, Jeong S Y, Kwak H G, et al. Metal object detection circuit with non-overlapped coils for wireless EV chargers[C]//Proc of 2016 IEEE 2nd Annual Southern Power Electronics Conf. Piscataway, NJ: IEEE, 2016: 1−6
[75] Xiao Jing, Guo Xiaoxuan, Shi Haonan, et al. Method of non-blind-zone foreign object detection in wireless power transfer system[C]//Proc of 2022 IEEE 9th Int Conf on Power Electronics Systems and Applications. Piscataway, NJ: IEEE, 2022: 1−6
[76] Xiang Lijuan, Zhu Ze, Tian Jindong, et al. Foreign object detection in a wireless power transfer system using symmetrical coil sets[J]. IEEE Access, 2019, 7: 44622−44631
[77] Thai V X, Park J H, Jeong S Y, et al. Equivalent-circuit-based design of symmetric sensing coil for self-inductance-based metal object detection[J]. IEEE Access, 2020, 8: 94190−94203
[78] Meng Tao, Tan Linlin, Zhong Ruying, et al. Research on metal foreign object detection of electric vehicle wireless charging system based on detection coil[J]. World Electric Vehicle Journal, 2021, 12(4): No. 203
[79] Son S, Lee S, Rhee J, et al. Foreign object detection of wireless power transfer system using sensor coil[C]//Proc of 2021 IEEE Wireless Power Transfer Conf. Piscataway, NJ: IEEE, 2021: 1−4
[80] Sun Ying, Song Kai, Zhou Tian, et al. A shared method of metal object detection and living object detection based on the quality factor of detection coils for electric vehicle wireless charging[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1−17
[81] Song Huishu, Huang Xiaosheng, Lin Shuyi, et al. A flexible foreign object detection method based on arrayed vertical-decoupled coils for wireless power transfer systems[C]//Proc of Int Conf on Wireless Power Transfer. Singapore: Springer Nature Singapore, 2022: 352−363
[82] Niu Songyan, Zhao Qingyu, Chen Haibiao, et al. Noncooperative metal object detection using pole-to-pole EM distribution characteristics for wireless EV charger employing DD coils[J]. IEEE Transactions on Industrial Electronics, 2023, 71(6): 6335−6344
[83] Zhang Yiming, Wang Hui, Shen Zhiwei, et al. A metal object detection system for electric vehicle wireless charging with quadrupole detection coils[J]. Energy Reports, 2023, 9: 601−607
[84] Sheinker A, Ginzburg B, Salomonski N, et al. Localization of a mobile platform equipped with a rotating magnetic dipole source[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 68(1): 116−128
[85] Ranganathan V, Waters B H, Smith J R. Localization of receivers using phased-array wireless power transfer systems[C]//Proc of 2015 IEEE Wireless Power Transfer Conf. Piscataway, NJ: IEEE, 2015: 1−4
[86] Wen Feng, Chu Xiaohu, Li Qiang, et al. Receiver localization and power stabilization for wireless power transfer system[C]//Proc of 2020 IEEE Int Conf on Applied Superconductivity and Electromagnetic Devices. Piscataway, NJ: IEEE, 2020: 1−2
[87] Chen Wei, Rickers S, Bruck G H, et al. Localization system using resonant magnetic coupling factor for improving efficiency in wireless power transfer[C]//Proc of 2015 9th European Conf on Antennas and Propagation. Piscataway, NJ: IEEE, 2015: 1−2
[88] Gao Yabiao, Duan Chen, Oliveira A A, et al. 3-D coil positioning based on magnetic sensing for wireless EV charging[J]. IEEE Transactions on Transportation Electrification, 2017, 3(3): 578−588
[89] Srivastava V K, Sharma A, Bharadwaj A. A magnetic resonance coupling based touchless pad for human-computer interfacing[C]//Proc of 2020 IEEE 15th Int Conf on Industrial and Information Systems. Piscataway, NJ: IEEE, 2020: 601−605
[90] Pirkl G, Stockinger K, Kunze K, et al. Adapting magnetic resonant coupling based relative positioning technology for wearable activitiy recogniton[C]//Proc of 2008 12th IEEE Int Symp on Wearable Computers. Piscataway, NJ: IEEE, 2008: 47−54
[91] Huang Jiawei, Mori T, Takashima K, et al. IM6D: Magnetic tracking system with 6-DOF passive markers for dexterous 3D interaction and motion[J]. ACM Transactions on Graphics, 2015, 34(6): 1−10
[92] Ray A, Habibagahi I, Babakhani A. Fully wireless and batteryless localization and physiological motion detection system for point-of-care biomedical applications[C]//Proc of 2022 IEEE Biomedical Circuits and Systems Conf. Piscataway, NJ: IEEE, 2022: 26−30
[93] Yamamoto T, Koshiji K. Position detection for transcutaneous energy transmission system for capsule endoscope[C]//Proc of 2013 IEEE Wireless Power Transfer. Piscataway, NJ: IEEE, 2013: 210−213
[94] Tao B, Sie E, Shenoy J, et al. Magnetic backscatter for in-body communication and localization[C]//Proc of the 29th Annual Int Conf on Mobile Computing and Networking. New York: ACM, 2023: 1−15
[95] Khan S R, Desmulliez M P Y. Investigation of capsule localization using 3-D printed spiral WPT coil[C]//Proc of 2023 17th European Conf on Antennas and Propagation. Piscataway, NJ: IEEE, 2023: 1−5
[96] Sun Hongru, Lin Hai, Zhu Fengchao, et al. Magnetic resonant beamforming for secured wireless power transfer[J]. IEEE Signal Processing Letters, 2017, 24(8): 1173−1177
[97] Xu Zhimeng, Chen Jinyu, Qiu Fenlin, et al. Zero-forcing beam forming energy efficiency optimization for the security control of wireless power transfer system[J]. Progress In Electromagnetics Research M, 2021, 103: 209−219
[98] Sun Hongru, Zhu Fengchao, Lin Hai, et al. Robust magnetic resonant beamforming for secured wireless power transfer[J]. IEEE Signal Processing Letters, 2018, 25(8): 1226−1230
[99] Jung H, Lee B. Optimization of magnetic field focusing and null steering for selective wireless power transfer[J]. IEEE Transactions on Power Electronics, 2019, 35(5): 4622−4633
[100] Zhang Zhen, Chau K T, Qiu Chun, et al. Energy encryption for wireless power transfer[J]. IEEE Transactions on Power Electronics, 2014, 30(9): 5237−5246
[101] Liu Wei, Chau K T, Lee C H T, et al. Full-range soft-switching pulse frequency modulated wireless power transfer[J]. IEEE Transactions on Power Electronics, 2019, 35(6): 6533−6547
[102] Yang Yirui, Zhan Zihao, Yu Honggang, et al. A privacy leakage issue in Qi-compatible cellphone wireless charging by stray magnetic field sniffing[C]//Proc of 2024 IEEE Applied Power Electronics Conf and Exposition. Piscataway, NJ: IEEE, 2024: 2870−2876
[103] La Cour A S, Afridi K K, Suh G E. Wireless charging power side-channel attacks[C]//Proc of the 2021 ACM SIGSAC Conf on Computer and Communications Security. New York: ACM, 2021: 651−665
[104] Liu Jianwei, Zou Xiang, Zhao Leqi, et al. Privacy leakage in wireless charging[J]. IEEE Transactions on Dependable and Secure Computing, 2022, 21(2): 501−514
[105] Ni Tao, Zhang Xiaokuan, Zuo Chaoshun, et al. Uncovering user interactions on smartphones via contactless wireless charging side channels[C]//Proc of 2023 IEEE Symp on Security and Privacy. Piscataway, NJ: IEEE, 2023: 3399−3415
[106] Ni Tao, Li Jianfeng, Zhang Xiaokuan, et al. Exploiting contactless side channels in wireless charging power banks for user privacy inference via few-shot learning[C]//Proc of the 29th Annual Int Conf on Mobile Computing and Networking. New York: ACM, 2023: 1−15
[107] Matovu R, Serwadda A, Bilbao A V, et al. Defensive charging: Mitigating power side-channel attacks on charging smartphones[C]//Proc of the 10th ACM Conf on Data and Application Security and Privacy. New York: ACM, 2020: 179−190
[108] Pothukuchi R P, Pothukuchi S Y, Voulgaris P, et al. Maya: Falsifying power sidechannels with operating system support[J]. arXiv preprint, arXiv: 1907.09440, 2019
[109] Yan Lin, Guo Yao, Chen Xiangqun, et al. A study on power side channels on mobile devices[C]//Proc of the 7th Asia-Pacific Symp on Internetware. New York: ACM, 2015: 30−38
[110] Yang Shengqi, Wolf W, Vijaykrishnan N, et al. Power attack resistant cryptosystem design: A dynamic voltage and frequency switching approach[C]//Proc of Design, Automation and Test in Europe. Piscataway, NJ: IEEE, 2005: 64−69
[111] Ganatra V, Yadav K, Senjaliya C, et al. Health hazards due to electromagnetic radiation in the workplace[J]. International Journal for Innovative Research in Science and Technology, 2015, 1(8): 138−145
[112] International Commission on Non-Ionizing Radiation Protection. Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz)[J]. Health Physics, 2020, 118(5): 483−524
[113] Christ A, Douglas M G, Roman J M, et al. Evaluation of wireless resonant power transfer systems with human electromagnetic exposure limits[J]. IEEE Transactions on Electromagnetic Compatibility, 2012, 55(2): 265−274
[114] Wang Quandi, Li Wanlu, Kang Jianwei, et al. Electromagnetic safety of magnetic resonant wireless charging system in electric vehicles[C]//Proc of 2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer. Piscataway, NJ: IEEE, 2017: 1−4
[115] Hong S, Kim Y, Lee S, et al. A frequency-selective EMI reduction method for tightly coupled wireless power transfer systems using resonant frequency control of a shielding coil in smartphone application[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(6): 2031−2039
[116] Hong S, Jeong S, Lee S, et al. Low EMF design of cochlear implant wireless power transfer system using a shielding coil[C]//Proc of 2020 IEEE Int Symp on Electromagnetic Compatibility & Signal/Power Integrity. Piscataway, NJ: IEEE, 2020: 623−625
[117] Xiu Sanmu, Hao Wenmei, Zhou Ying, et al. Design of coupling coil parameters for wireless charging tram based on electromagnetic safety[J]. Journal of Advanced Transportation, 2022, 2022(1): 5769224
[118] Worgan P, Fraser M. CoilMove: An actuated to-body energy transfer system[C]//Proc of the 2017 Conf on Designing Interactive Systems. New York: ACM, 2017: 791−795
[119] Sato S, Tanaka Y, Tsuruda Y, et al. Basic investigation on wireless power transfer system via magnetic resonant coupling with magnetic field suppression at an any point[C]//Proc of the 46th Annual Conf of the IEEE Industrial Electronics Society (IECON 2020). Piscataway, NJ: IEEE, 2020: 1555−1560
[120] Zhou Wangqiu, Zhou Hao, Wang Xiaoyu, et al. Shield: Safety ensured high-efficient scheduling for magnetic MIMO wireless power transfer system[C]//Proc of IEEE Conf on Computer Communications (IEEE INFOCOM 2022). Piscataway, NJ: IEEE, 2022: 910−919
[121] 郑黎明, 刘培国, 王宏义, 等. 无源物联网:背景、概念、挑战及研究进展[J]. 电子与信息学报,2023,45(7):2293−2310 Zheng Liming, Liu Peiguo, Wang Hongyi, et al. Passive Internet of things: Background, concept, challenges and progress[J]. Journal of Electronics and Information Technology, 2023, 45(7): 2293−2310(in Chinese)
[122] Zhao Renjie, Wang Kejia, Zheng Kai, et al. SlimWiFi: Ultra-low-power IoT radio architecture enabled by asymmetric communication[C]//Proc of 20th USENIX Symp on Networked Systems Design and Implementation. Berkeley, CA: USENIX Association, 2023: 1201−1219
[123] Mary D R K, Ko E, Kim S G, et al. A systematic review on recent trends, challenges, privacy and security issues of underwater internet of things[J]. Sensors, 2021, 21(24): 8262
[124] Zhao Renjie, Wang Purui, Ma Yunfei, et al. Nfc+ breaking nfc networking limits through resonance engineering[C]//Proc of the Annual Conf of the ACM Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer Communication. New York: ACM, 2020: 694−707
[125] 王阳,吴海锋,曾玉. 稠密RFID标签环境下捕获感知贝叶斯标签估计[J]. 计算机研究与发展,2016,53(6):1325−1331 Wang Yang, Wu Haifeng, Zeng Yu. Capture-aware Bayesian tag estimation for dense RFID tags environment[J]. Journal of Computer Research and Development, 2016, 53(6): 1325−1331(in Chinese)
[126] Jin Meng, Li Kexin, Tian Xiaohua, et al. Fast, fine-grained, and robust grouping of RFIDs[C]//Proc of the 29th Annual Int Conf on Mobile Computing and Networking. New York: ACM, 2023: 1−14
-
期刊类型引用(2)
1. 李光. 基于区块链技术的建筑工程质量管理策略. 中国建筑装饰装修. 2025(02): 75-77 . 百度学术
2. Jing He,Xiaofeng Ma,Dawei Zhang,Feng Peng. Supervised and revocable decentralized identity privacy protection scheme. Security and Safety. 2024(04): 113-135 . 必应学术
其他类型引用(1)