高级检索

    基于人机协作的多智能体科学假设生成

    Multi-Agent Scientific Hypothesis Generation Based on Human-Machine Collaboration

    • 摘要: 随着科学文献数量的快速增长和研究领域的不断深化,科研人员在提出创新性科学假设时面临巨大的信息处理挑战. 尽管大语言模型(large language models, LLMs)在数据处理和知识整合方面展现出巨大潜力,但它们在生成具有创新性和深度的科学假设方面仍存在许多不足. 目前的研究主要集中在如何利用LLMs加速已有理论和技术的推进和完善,而忽视了科学研究从无到有的初始阶段,这一阶段涉及新假设的提出和新理论的构建,是科学进步的关键. 基于结构智力理论中的发散思维和收敛思维,提出了一种创新的人机协作多智能体框架(human-in-the-loop multi-agent framework, HILMA),以实现可靠的初始科学假设生成. 该框架结合实时系统化的知识检索增强机制,通过动态整合最新科研进展,构建引文网络子图,为LLMs提供前沿和完备的科研知识综述. 同时,通过多智能体辩论方法模拟科学同行评审过程,并且结合人类专家的直觉和专业知识,进一步优化和精炼生成的假设,增强科学假设的多样性和论证深度. 一系列人机评估表明,与现有基线相比, HILMA在生成高质量科学假设方面展现出显著优势,有望成为推动科技创新的关键工具.

       

      Abstract: With the explosive growth of scientific literature and the continuous deepening of research fields, researchers face significant information processing challenges when attempting to formulate novel scientific hypotheses. Although Large Language Models (LLMs) possess considerable potential for data processing and knowledge integration, they remain limited in their ability to generate original and insightful scientific hypotheses. Existing research predominantly emphasizes utilizing LLMs to expedite and refine established theories and technologies, often overlooking the initial stages of scientific inquiry where novel hypotheses are proposed and new theories are developed—a stage vital to scientific advancement. This study, grounded in the principles of divergent and convergent thinking from the theory of structured intelligence, proposes an innovative Human-in-the-loop Multi-agent Framework (HILMA) for the reliable generation of scientific hypotheses. The HILMA framework incorporates a real-time, systematic knowledge retrieval enhancement mechanism, dynamically integrating the latest research advancements to construct citation network subgraphs, providing LLMs with comprehensive and up-to-date scientific knowledge surveys. Additionally, the framework enhances hypothesis generation through a multi-agent argumentation approach that simulates the scientific peer review process, while also leveraging the intuition and expertise of human experts to further refine and diversify the generated hypotheses. A series of human-machine evaluations has shown that this method demonstrates significant advantages over existing baselines in generating high-quality scientific hypotheses and holds promise as a key facilitator for driving technological innovation.

       

    /

    返回文章
    返回