高级检索

    一种社交特征自适应融合的对抗生成式推荐方法

    Adaptive Fusion of Social Features in Generative Adversarial Networks for Recommender Systems

    • 摘要: 社交推荐系统旨在探索社交网络用户社交标签背后的协同信息,为用户提供个性化推荐. 然而,社交网络中大量的用户之间没有显式社交关系,但他们却共享相同的项目历史交互行为. 以往研究者主观上期望通过复杂元路径挖掘用户间的高阶隐式社交特征,但客观上却降低了模型的实用性. 而且,高阶隐式社交特征中的噪声较大,根据特征拼接或深度学习的方式与显式社交特征融合后反而会降低模型的适应能力. 近年来,对抗生成式网络为数据增强提供了有力的支持,但其复杂的结构令模型收敛困难,导致其应用于社交推荐场景时使得模型整体效率不高. 基于此,提出一种用户社交特征自适应融合的对抗生成式推荐模型AFS-GAN(adaptive fusion of social features in generative adversarial networks for recommender systems). 首先,采用2个简单元路径分别提取用户的1阶显式社交特征和2阶隐式社交特征,以消除研究者主观判断的不利影响,提高模型的实用性;其次,设计自适应因子灵活地融合显示和隐式社交特征,充分体现用户社交行为的多样性,提升推荐的适应能力;最后,在生成器中采用直通Gumbel Softmax加速生成伪项目,在判别器中采用4元BPR(Bayesian personalized ranking)损失函数直接最大化判别损失,既简化了模型,又提升了其收敛速度,从而整体上提高了模型的效率. 在4个基准推荐数据集上与8种目前较先进的社交推荐模型进行了广泛的比较,实验结果表明,该方法在PrecisionRecallNDCG这3个指标表现卓越.

       

      Abstract: Social recommender systems explore collaborative data behind social labels to offer personalized suggestions. Despite many users lacking explicit social connections, they share similar item interaction histories. Prior studies have tried extracting high-order implicit social features via complex metapaths, which often diminishes model practicality. Additionally, the noise in these features can reduce adaptability when combined with explicit features using concatenation or deep learning. Recently, Generative Adversarial Networks (GANs) have supported robust data augmentation but pose challenges with model convergence, impacting efficiency in social recommendation contexts. To address these issues, we introduce AFS-GAN (adaptive fusion of social features in generative adversarial networks for recommender systems), a generative adversarial recommendation model with an adaptive fusion strategy for user social features. Initially, two simple metapaths extract first-order explicit and second-order implicit social features, improving model practicality and reducing subjective bias. An adaptive factor then flexibly fuses these features, capturing the diversity of user behaviors and enhancing recommendation adaptability. The generator uses Straight-through Gumbel Softmax to speed up pseudo-item generation, while the discriminator employs a quartic Bayesian Personalized Ranking (BPR) loss function to optimize discrimination loss, thus speeding convergence and simplifying the model. Extensive comparisons on 4 benchmark recommendation datasets with 8 leading social recommendation models have demonstrated that our approach excels in Precision, Recall, and NDCG.

       

    /

    返回文章
    返回