高级检索

    MB-HGCN:基于层次图卷积的多行为推荐方法

    MB-HGCN: A Hierarchical Graph Convolutional Network for Multi-Behavior Recommendation

    • 摘要: 基于协同过滤的单行为推荐系统在实际应用中经常面临严重的数据稀疏性问题,从而导致性能不理想. 多行为推荐(multi-behavior recommendation,MBR)旨在利用辅助行为数据来帮助学习用户偏好,以缓解数据稀疏性问题并提高推荐精度. MBR的核心在于如何从辅助行为中学习用户偏好(表示为向量表征),并将这些信息用于目标行为推荐. 介绍了一种旨在利用多行为数据的新型推荐方法(hierarchical graph convolutional network for multi-behavior recommendation,MB-HGCN). 该方法通过从全局层面的粗粒度(即全局向量表征)到局部层面的细粒度(即行为特定向量表征)来学习用户和物品的向量表征. 全局向量表征是从所有行为交互构建的统一同构图中学习得到的,并作为每个行为图中行为特定向量表征学习的初始化向量表征. 此外,MB-HGCN还强调了用户和物品在行为特定表征上的差异,并设计了2种简单但有效的策略来分别聚合用户和物品的行为特定表征. 最后,采用多任务学习进行优化. 在3个真实数据集上的实验结果表明,所提方法显著优于基准方法,尤其是在Tmall数据集上,MB-HGCN在HR@10和NDCG@10指标上分别实现了73.93%和74.21%的相对性能提升.

       

      Abstract: Collaborative filtering-based recommender systems that only rely on single-behavior data often encounter serious sparsity problems in practical applications, resulting in poor performance. Multi-behavior recommendation (MBR) is a method that seeks to learn user preferences, represented as vector embeddings, from auxiliary behavior interaction data. By leveraging these preferences for target behavior recommendations, MBR can mitigate the data sparsity challenge and enhances predictive precision for recommendations. This research introduces MB-HGCN, a novel recommendation method designed to exploit multi-behavior data. The method leverages a hierarchical graph convolutional network to learn user and item embeddings from a coarse-grained global level to a fine-grained behavior-specific level. Our method learns global embeddings from a unified homogeneous graph constructed by the interactions of all behaviors, which are then used as initialized embeddings for behavior-specific embedding learning in each behavior graph. Moreover, we also emphasize the distinct of the user and item behavior-specific embeddings and design two simple-yet-effective strategies to aggregate the behavior-specific embeddings for users and items, respectively. Finally, we adopt multi-task learning for optimization. Extensive experimental results on three real-world benchmark datasets show that our MB-HGCN method can substantially outperform the state-of-the-art methods, achieving a relative improvement of 73.93% and 74.21% for HR@10 and NDCG@10, respectively, on the Tmall datasets.

       

    /

    返回文章
    返回