高级检索

    大模型低比特量化的历史、现状和未来:以复域量化为例

    The History, Present, and Future of Low-Bit Quantization for Large Language Models: A Case Study on Complex-domain Quantization

    • 摘要: 随着大语言模型参数规模的指数级增长,模型部署和推理面临着严峻的内存和计算资源挑战。量化技术作为模型压缩的核心方法,通过降低权重和激活值的数值精度,显著减少了模型的存储需求和计算开销。本文首先回顾了量化技术的发展历程,从经典的Int8/4量化方法到前沿的超低比特量化算法,总结了典型方法的技术特征与性能演进规律,指出传统实数域量化在极低比特条件下存在受限于离散化误差的挑战,难以突破性能上限。为此,本文进而系统性地梳理了复域量化系列工作。该系列工作提出了基于复数域的量化范式,通过在参数表示中引入幅度与相位两个自由度,显著扩展了模型的表达空间。实验结果表明,该方案在多个基准数据集上优于现有超低比特量化方法,有效突破了实数域模型的性能天花板,展现出复域量化在高效建模与性能保持方面的潜在价值。总体而言,本文通过对量化技术演进及复域量化系列研究的系统分析,旨在揭示超低比特量化的发展规律与未来趋势,为高效大模型的理论研究与工程实现提供参考。

       

      Abstract: With the exponential growth in the parameter scale of Large Language Models (LLMs), model deployment and inference face severe challenges in terms of memory and computational resources. Quantization, as a core compression technique, significantly reduces storage requirements and computational overhead by lowering the numerical precision of weights and activations. This paper first reviews the development of quantization techniques, from classic Int8/4 methods to cutting-edge extreme-low bit algorithms. It summarizes the technical characteristics and performance evolution of typical methods, identifying a key challenge: traditional real-domain quantization is limited by discretization errors at extreme-low bitrates, making it difficult to break its performance ceiling. To address this limitation, this paper systematically reviews the complex-domain quantization series of work. This series introduces a quantization paradigm based on the complex domain, which significantly expands the model's expressive space by utilizing amplitude and phase as two degrees of freedom in the parameter representation. Experimental results demonstrate that iFairy outperforms existing extreme-low-bit methods on multiple benchmark datasets and effectively breaks the real-domain performance ceiling. This showcases the potential value of complex-domain quantization in achieving both efficient modeling and performance preservation. Through a systematic analysis of quantization’s evolution and the case study on complex-domain quantization, this paper reveals development patterns and future trends, providing a reference for the theoretical research and engineering implementation of efficient LLMs.

       

    /

    返回文章
    返回