Constant Degree Network for Massively Data Center
-
摘要: 如何高效互连大规模服务器是数据中心网络面临的一个重要挑战.目前提出的新型数据中心网络结构主要是通过增加服务器的网络端口数来扩展数据中心的规模,导致扩展的局限性和管理的复杂性.为此,如何设计由固定网络端口数的服务器互连而成的、具有常量度数的数据中心网络结构意义重大.提出了一种新型的面向大规模数据中心的常量度数互连网络结构CH(conjugate hypercube),该结构以固定网络端口数的服务器为中心,采用多层次互连实现了可扩展性和性能之间的平衡.理论分析和实验结果表明,该互连网络在不增加服务器网络端口数的前提下,可有效支持大规模数据中心高带宽、高容错的多模式数据通信;同时,具有良好的可部署性和可维护性.Abstract: An important challenge on designing data center networking (DCN) is how to efficiently interconnect a large number of servers. Traditional tree-based structures are increasingly difficult to meet the design goals of data centers. Recently, a number of novel DCNs are proposed. However, these DCNs expand the scale of data center mainly by increasing the number of servers network interface card (NIC) ports, which brings expanding limitation and managing complexity. Consequently, it is meaningful and challenging to design a scalable structure for data centers, using only the commodity servers with fixed number of NIC ports and low-end, multi-port commodity switches. To address this problem, this paper proposes a novel DCN structure with constant degree called CH, which utilizes fixed number of NIC ports and commodity switches to interconnect large population of servers. The structure is server-centric, and leverages the expansibility and performance using multi-level interconnection. They own two potential benefits, i.e., the expansibility and equal degree. Theoretical analysis and experiment results show that CH has excellent topology properties and can provide large data center with multi-pattern data traffic with high bandwidth and high fault-tolerance, but without increasing the number of NIC ports. Moreover, the modularity makes the structure have good deployablility and maintainability.
-
Keywords:
- data center networking (DCN) /
- topology structure /
- constant degree /
- server-centric /
- multi-path
-
-
期刊类型引用(7)
1. 姜磊,章小卫. 基于模糊隶属度邻域覆盖的三支分类决策. 计算机应用与软件. 2024(02): 271-278 . 百度学术
2. 骆公志,张尚蕾. 基于正区域和投票式属性重要度的特征提取算法. 南京邮电大学学报(自然科学版). 2024(01): 79-89 . 百度学术
3. 王笑笑,巴婧,陈建军,宋晶晶,杨习贝. 超约简求解:效率与性能的提升. 计算机科学. 2023(02): 166-172 . 百度学术
4. 刘长顺,刘炎,宋晶晶,徐泰华. 基于论域离散度的属性约简算法. 山东大学学报(理学版). 2023(05): 26-35+52 . 百度学术
5. 张清华,艾志华,张金镇. 融合密度与邻域覆盖约简的分类方法. 陕西师范大学学报(自然科学版). 2022(03): 33-42 . 百度学术
6. 沈毅波. RBF神经网络在关联数据一致性挖掘中的应用. 福建电脑. 2022(08): 5-9 . 百度学术
7. 周长顺,徐久成,瞿康林,申凯丽,章磊. 一种基于改进邻域粗糙集中属性重要度的快速属性约简方法. 西北大学学报(自然科学版). 2022(05): 745-752 . 百度学术
其他类型引用(7)
计量
- 文章访问数: 1150
- HTML全文浏览量: 0
- PDF下载量: 1090
- 被引次数: 14