Paleyfly: A Scalable Topology in High Performance Interconnection Network
-
摘要: 高速互连网络是高性能计算系统的重要组成部分.随着网络规模需求的扩大,如何搭建更大规模的网络是高速互连网络拓扑结构设计的关键.因此,提出一种新型层次化的拓扑结构Paleyfly(PF),其结合了Paley图强正则的特性和Random Regular(RR)图支持任意规模大小的特点.相比其他新型高速互连网络拓扑结构,Paleyfly能够有效解决在路由芯片端口数受限的背景下,Dragonfly(DF)可扩展性受限、Fat tree(Ft)物理成本高、RR结构物理布局难、路由表规模大等问题.同时,根据强正则属性在路由策略上负载均衡的优势,提出了4种路由策略来解决网络的拥塞问题.最后,通过模拟器实验比较分析PF结构与其他拓扑结构及PF结构不同路由策略的性能,验证了PF结构在不同规模以及不同通信模式配置下网络延迟优于RR结构.Abstract: High performance interconnection network is one of the most important parts in high performance computing system. How to design the topology of interconnection networks is the key point for the development of larger scale networks. Therefore, we contribute a new hierarchical topology structure Paleyfly (PF), which not only utilizes the property of strong regular graph with Paley graph but also supports the continued scale like Random Regular (RR) graph. Compared with other new high performance interconnection networks, Paleyfly can solve the problems of the scalability of Dragonfly (DF), the physical cost of Fat tree (Ft), the wiring complexity and the storage for routing table of Random Regular and so on. Meanwhile, according to the property of strong regular graph for load-balanced routing algorithm, we propose four routing algorithms to deal with congestion. Finally, through the simulation we briefly analyze the performance of Paleyfly comparing with other kinds of topologies and different routing algorithms. Experimental results show that our topology can achieve better effect compared with Random Regular under the various scales of network and different traffic patterns.
-
Keywords:
- topology structure /
- scalability /
- Random Regular (RR) /
- Dragonfly (DF) /
- Paley graph
-
-
期刊类型引用(21)
1. 李禹纬,付锐,刘帆. 改进YOLOv7的轻量化交通标志检测算法. 太原理工大学学报. 2024(01): 195-203 . 百度学术
2. 李旭东 ,廖婷婷 ,乐文毅 ,曾小信 ,陈思墨 ,李宗平 . 基于YOLOv3的袋式除尘器滤袋破损自动检测方法. 烧结球团. 2024(01): 99-105 . 百度学术
3. 江金懋,钟国韵. 基于双向嵌套级联残差的交通标志检测方法. 现代电子技术. 2024(05): 176-181 . 百度学术
4. 韩长江,刘丽娟. 基于Transformer改进YOLOv5的交通标志检测算法. 信息技术. 2024(11): 21-27 . 百度学术
5. 张京淇,李超,李晓磊. 基于改进YOLOv8s的交通标志检测算法. 电脑知识与技术. 2024(30): 31-34 . 百度学术
6. 胡昭华,王莹. 改进YOLOv5的交通标志检测算法. 计算机工程与应用. 2023(01): 82-91 . 百度学术
7. 金晓康,吴瑶,施莹娟,沈才有. 基于YOLO框架的实时交通标志识别算法研究与系统实现. 软件. 2023(01): 20-23 . 百度学术
8. 刘翀豪,潘理虎,杨帆,张睿. 改进YOLOv5的轻量化口罩检测算法. 计算机工程与应用. 2023(07): 232-241 . 百度学术
9. 王能文,张涛. 改进YOLOX-S实时多尺度交通标志检测算法. 计算机工程与应用. 2023(21): 167-175 . 百度学术
10. 方猛,邹亚洲. 基于车载点云数据的道路交通指示标志检测方法. 北京测绘. 2023(08): 1121-1127 . 百度学术
11. 王浩,雷印杰,陈浩楠. 改进YOLOV3实时交通标志检测算法. 计算机工程与应用. 2022(08): 243-248 . 百度学术
12. 刘万军,李嘉欣,曲海成. 基于多尺度卷积神经网络的交通标示识别研究. 计算机应用研究. 2022(05): 1557-1562 . 百度学术
13. 张上,王恒涛,冉秀康. 基于YOLOv5的轻量化交通标志检测方法. 电子测量技术. 2022(08): 129-135 . 百度学术
14. 刘宇宸,石刚,崔青,刘明辉,郑秋萍. 改进MobileNetv3-YOLOv3交通标志牌检测算法. 东北师大学报(自然科学版). 2022(02): 53-60 . 百度学术
15. 高宇鹏,梁世军. 交通禁令标志自动图像识别方法设计与仿真. 计算机仿真. 2022(06): 123-126+145 . 百度学术
16. 闵锋,侯泽铭. 铁路接触网主要部件检测方法. 计算机工程与设计. 2022(10): 2911-2917 . 百度学术
17. 马宇,张丽果,杜慧敏,毛智礼. 卷积神经网络的交通标志语义分割. 计算机科学与探索. 2021(06): 1114-1121 . 百度学术
18. 马永杰,程时升,马芸婷,马义德. 卷积神经网络及其在智能交通系统中的应用综述. 交通运输工程学报. 2021(04): 48-71 . 百度学术
19. 张力天,孔嘉漪,樊一航,范灵俊,包尔固德. 基于宏微观因素的概率级别的车辆事故预测. 计算机研究与发展. 2021(09): 2052-2061 . 本站查看
20. 陈燕,杨志刚. 自然场景建筑工程标志信息逐级细化识别算法. 计算机仿真. 2021(08): 450-454 . 百度学术
21. 任坤,黄泷,范春奇,高学金. 基于多尺度像素特征融合的实时小交通标志检测算法. 信号处理. 2020(09): 1457-1463 . 百度学术
其他类型引用(33)
计量
- 文章访问数: 1761
- HTML全文浏览量: 0
- PDF下载量: 970
- 被引次数: 54