• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

异构云计算体系结构及其多资源联合公平分配策略

王金海, 黄传河, 王晶, 何凯, 史姣丽, 陈希

王金海, 黄传河, 王晶, 何凯, 史姣丽, 陈希. 异构云计算体系结构及其多资源联合公平分配策略[J]. 计算机研究与发展, 2015, 52(6): 1288-1302. DOI: 10.7544/issn1000-1239.2015.20150168
引用本文: 王金海, 黄传河, 王晶, 何凯, 史姣丽, 陈希. 异构云计算体系结构及其多资源联合公平分配策略[J]. 计算机研究与发展, 2015, 52(6): 1288-1302. DOI: 10.7544/issn1000-1239.2015.20150168
Wang Jinhai, Huang Chuanhe, Wang Jing, He Kai, Shi Jiaoli, Chen Xi. A Heterogeneous Cloud Computing Architecture and Multi-Resource-Joint Fairness Allocation Strategy[J]. Journal of Computer Research and Development, 2015, 52(6): 1288-1302. DOI: 10.7544/issn1000-1239.2015.20150168
Citation: Wang Jinhai, Huang Chuanhe, Wang Jing, He Kai, Shi Jiaoli, Chen Xi. A Heterogeneous Cloud Computing Architecture and Multi-Resource-Joint Fairness Allocation Strategy[J]. Journal of Computer Research and Development, 2015, 52(6): 1288-1302. DOI: 10.7544/issn1000-1239.2015.20150168
王金海, 黄传河, 王晶, 何凯, 史姣丽, 陈希. 异构云计算体系结构及其多资源联合公平分配策略[J]. 计算机研究与发展, 2015, 52(6): 1288-1302. CSTR: 32373.14.issn1000-1239.2015.20150168
引用本文: 王金海, 黄传河, 王晶, 何凯, 史姣丽, 陈希. 异构云计算体系结构及其多资源联合公平分配策略[J]. 计算机研究与发展, 2015, 52(6): 1288-1302. CSTR: 32373.14.issn1000-1239.2015.20150168
Wang Jinhai, Huang Chuanhe, Wang Jing, He Kai, Shi Jiaoli, Chen Xi. A Heterogeneous Cloud Computing Architecture and Multi-Resource-Joint Fairness Allocation Strategy[J]. Journal of Computer Research and Development, 2015, 52(6): 1288-1302. CSTR: 32373.14.issn1000-1239.2015.20150168
Citation: Wang Jinhai, Huang Chuanhe, Wang Jing, He Kai, Shi Jiaoli, Chen Xi. A Heterogeneous Cloud Computing Architecture and Multi-Resource-Joint Fairness Allocation Strategy[J]. Journal of Computer Research and Development, 2015, 52(6): 1288-1302. CSTR: 32373.14.issn1000-1239.2015.20150168

异构云计算体系结构及其多资源联合公平分配策略

基金项目: 国家自然科学基金项目(61373040,61173137);教育部博士点基金项目(20120141110073);新疆维吾尔自治区自然科学基金项目(2015211B030)
详细信息
  • 中图分类号: TP316

A Heterogeneous Cloud Computing Architecture and Multi-Resource-Joint Fairness Allocation Strategy

  • 摘要: 资源分配策略是当前云计算研究领域中的一个重要研究热点,异构云计算体系结构下的复杂应用问题研究中,最基本的问题在于如何将总体有限的资源分配给多个租户或应用,以达到效率或收效最大化.但是,在经典的资源分配问题中,任务或者用户往往是“贪婪”的;因此,在总体资源有限的前提下,资源分配的公平性就显得尤为重要.为了满足不同的任务需求,达到多种资源分配的公平性,设计了一个虚拟化的异构云计算体系结构,提出了该体系结构下基于占优资源的多资源联合公平分配算法(maximizing multi-resource fairness based on dominant resource, MDRF),并且证明了算法的帕累托等相关属性;给出了占优资源熵(dominant resource entropy, DRE)和占优资源权重(dominant resource weight, DRW)的定义,占优资源熵更加精确地刻画了用户资源请求与任务所调度到的服务器资源之间的适应程度,使系统的自适应能力更强同时提高了资源利用率.占优资源权重保障了用户优先获取资源的优先次序,协同所采用保障公平性的Max-Min Fairness策略,使资源的分配更加有序.实验表明,我们的策略有更高的系统资源利用率,并且使需求与供给更加匹配,进而使用户的占优资源获取更多,提高了服务质量.
    Abstract: Resource allocation strategies are an important research hotspot about cloud computing at present. The most fundamental problem is how to fairly allocate the finite amount of resources to multiple users or applications in complex application under heterogeneous cloud computing architecture, at the same time, to achieve maximize resource utilization or efficiency. However, tasks or users are often greedy for classical resource allocation problems, therefore, under the condition of finite amount of resource, the fairness of resource allocation is particularly important. To meet different task requirements and achieve multiple types resource fairness, we design a heterogeneous cloud computing architecture and present an algorithm of maximizing multi-resource fairness based on dominant resource(MDRF). We further prove the related attributions of our algorithm such as Pareto efficiency, and give the definition of dominant resource entropy (DRE) and dominant resource weight (DRW). DRE accurately depicts the adaption degree between the resource requirement of user and the resource type of server allocated for user tasks, and makes the system more adaptive and improves the system resource utilization. DRW guarantees the priority of users obtaining resource when cooperating with the adopted Max-Min strategy guaranteeing fairness, and makes the system resource allocation more ordered. Experimental results demonstrate that our strategy has more higher resource utilization and makes resource requirements and resource provision more matching. Furthermore, our algorithm makes users achieve more dominant resource and improves the quality of service.
  • 期刊类型引用(11)

    1. 袁子轩,张峰,许岗,魏光辉,石永强. 融合MAML和TGAT的机会网络动态链路预测模型. 小型微型计算机系统. 2024(12): 2957-2963 . 百度学术
    2. 曹志威,樊志杰,王青杨,韩伟力,李欣. 一种降噪自编码器的复杂网络链路预测算法. 小型微型计算机系统. 2023(03): 665-672 . 百度学术
    3. 刘林峰,于子兴,祝贺. 基于门控循环单元的移动社会网络链路预测方法. 计算机研究与发展. 2023(03): 705-716 . 本站查看
    4. 王曙燕,巩婧怡. 融合节点标签与强弱关系的链路预测算法. 计算机工程与应用. 2022(18): 71-77 . 百度学术
    5. 张瑾,朱桂祥,王宇琛,郑烁佳,陈镜潞. 基于异质图表达学习的跨境电商推荐模型. 电子与信息学报. 2022(11): 4008-4017 . 百度学术
    6. 唐明虎. 基于多种信息组合模式的非负矩阵分解链路预测模型. 计算机应用研究. 2021(05): 1393-1397+1408 . 百度学术
    7. 顾秋阳,吴宝,池仁勇. 基于高阶路径相似度的复杂网络链路预测方法. 通信学报. 2021(07): 61-69 . 百度学术
    8. 许爽,李淼磊. 基于子图特征的科学家合作网络链路预测. 大连民族大学学报. 2020(01): 51-63 . 百度学术
    9. 张尚田,陈光,邱天. 基于融合特征的LSTM评分预测. 计算机与现代化. 2020(03): 49-53+59 . 百度学术
    10. 顾秋阳,琚春华,吴功兴. 基于子图演化与改进蚁群优化算法的社交网络链路预测方法. 通信学报. 2020(12): 21-35 . 百度学术
    11. 李琦,王智强,梁吉业. 基于PU学习的链接预测方法. 模式识别与人工智能. 2019(09): 793-799 . 百度学术

    其他类型引用(18)

计量
  • 文章访问数:  1402
  • HTML全文浏览量:  5
  • PDF下载量:  1207
  • 被引次数: 29
出版历程
  • 发布日期:  2015-05-31

目录

    /

    返回文章
    返回