• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

一种面向蛋白质复合体检测的图聚类方法

王杰, 梁吉业, 郑文萍

王杰, 梁吉业, 郑文萍. 一种面向蛋白质复合体检测的图聚类方法[J]. 计算机研究与发展, 2015, 52(8): 1784-1793. DOI: 10.7544/issn1000-1239.2015.20150180
引用本文: 王杰, 梁吉业, 郑文萍. 一种面向蛋白质复合体检测的图聚类方法[J]. 计算机研究与发展, 2015, 52(8): 1784-1793. DOI: 10.7544/issn1000-1239.2015.20150180
Wang Jie, Liang Jiye, Zheng Wenping. A Graph Clustering Method for Detecting Protein Complexes[J]. Journal of Computer Research and Development, 2015, 52(8): 1784-1793. DOI: 10.7544/issn1000-1239.2015.20150180
Citation: Wang Jie, Liang Jiye, Zheng Wenping. A Graph Clustering Method for Detecting Protein Complexes[J]. Journal of Computer Research and Development, 2015, 52(8): 1784-1793. DOI: 10.7544/issn1000-1239.2015.20150180
王杰, 梁吉业, 郑文萍. 一种面向蛋白质复合体检测的图聚类方法[J]. 计算机研究与发展, 2015, 52(8): 1784-1793. CSTR: 32373.14.issn1000-1239.2015.20150180
引用本文: 王杰, 梁吉业, 郑文萍. 一种面向蛋白质复合体检测的图聚类方法[J]. 计算机研究与发展, 2015, 52(8): 1784-1793. CSTR: 32373.14.issn1000-1239.2015.20150180
Wang Jie, Liang Jiye, Zheng Wenping. A Graph Clustering Method for Detecting Protein Complexes[J]. Journal of Computer Research and Development, 2015, 52(8): 1784-1793. CSTR: 32373.14.issn1000-1239.2015.20150180
Citation: Wang Jie, Liang Jiye, Zheng Wenping. A Graph Clustering Method for Detecting Protein Complexes[J]. Journal of Computer Research and Development, 2015, 52(8): 1784-1793. CSTR: 32373.14.issn1000-1239.2015.20150180

一种面向蛋白质复合体检测的图聚类方法

基金项目: 国家自然科学基金项目(61432011,61272004);山西省自然科学基金项目(2011011016-1);教育部高等学校博士学科点专项科研基金项目(200801081017)
详细信息
  • 中图分类号: TP181

A Graph Clustering Method for Detecting Protein Complexes

  • 摘要: 蛋白质互作用(protein-protein interaction, PPI)网络是广泛存在的一类复杂生物网络,其网络拓扑特征与功能模块分析密切相关.图聚类是对复杂网络进行分析和处理的一种重要计算方法.传统的PPI网络中蛋白质复合体检测算法通常对网络图中的对象进行硬划分,而寻找网络中的重叠簇的软聚类算法已成为当前研究热点之一.现有的软聚类算法较少关注寻找网络中具有重要生物意义的小规模非稠密簇.对此,基于网络中结点邻域给出了边关联强度的度量方法,并在此基础上提出了一种基于流模拟的PPI网络中复合体检测的图聚类(flow-simulation graph clustering, F-GCL)算法,该算法可以在快速发现PPI网络中的重叠簇的同时找到小规模非稠密簇;同时,与MCODE(molecular complex detection),MCL(Markov clustering),RNSC(restricted neighborhood search clustering)和CPM(clique percolation method)算法在6个酿酒酵母PPI网络上进行比较,该算法在F-measure,Accuracy,Separation方面表现了较好的性能.
    Abstract: Protein-protein interaction (PPI) networks are widely present in complex biological networks. The topological features of PPI networks play an important role in analyzing the functional modules in networks. Some graph clustering methods have been successfully used to complex networks to detect protein complexes in PPI networks. Traditional graph clustering algorithms in PPI analyzing methods primarily focus on hard clustering for a network, while, nowadays soft clustering algorithms to find overlapped clusters have become one of the hotspots of current research. Existing soft clustering algorithms pay less attention on small-scale non-dense clusters, while some small-scale non-dense clusters often have important biological meaning in PPI networks. A measuring method of the association strength of edges is developed based on node neighborhoods in networks, and then a soft clustering algorithm named flow-simulation graph clustering (F-GCL) on the basis of flow simulation is presented to detect complexes in a PPI network. Experiments show that the proposed soft clustering algorithm F-GCL can simultaneously find out overlapping clusters and small-scale non-dense clusters without improving the running time. Compared with MCODE(molecular complex detection), MCL(Markov clustering), RNSC(restricted neighborhood search clustering) and CPM(clique percolation method) algorithms on six Saccharomyces cerevisiae PPI networks, the algorithm F-GCL shows considerable or better performance on three evaluating indicators: F-measure, Accuracy and Separation.
  • 期刊类型引用(19)

    1. 董胡,陈伟,彭高丰,陈耀东,刘刚. 基于信号子空间和DNN的语音增强方法. 微型电脑应用. 2025(01): 32-34+38 . 百度学术
    2. 李世其,周雨玫,郑旋烨,刘裔斌. 复杂噪声环境下服务机器人语音增强算法研究. 传感器与微系统. 2025(04): 35-39 . 百度学术
    3. 王向辉,李梅,田旭华,王姣,谭歆,路东东. 短时傅里叶变换域最优非因果滤波器和滤波矩阵降噪算法. 陕西科技大学学报. 2024(02): 164-173+197 . 百度学术
    4. 尤昕源,王恒. 基于门控膨胀卷积循环网络的单声道语音增强. 计算机应用. 2024(04): 1317-1324 . 百度学术
    5. 莫尚斌,王文君,董凌,高盛祥,余正涛. 基于多路信息聚合协同解码的单通道语音增强. 计算机应用. 2024(08): 2611-2617 . 百度学术
    6. 缪悦. 时频域变换技术在语音降噪中的应用. 电声技术. 2024(12): 92-94+100 . 百度学术
    7. 李鑫元,黄鹤鸣. 基于并行卷积循环网络的单通道语音增强系统. 计算机工程与设计. 2023(04): 1181-1188 . 百度学术
    8. 文丽萍. 噪声环境下基于小波变换的普通话智能测试系统设计. 自动化与仪器仪表. 2023(05): 153-157 . 百度学术
    9. 刘汾港,马建芬,张朝霞. 基于离散余弦变换与Transformer的语音增强. 计算机工程与设计. 2023(06): 1893-1898 . 百度学术
    10. 徐浩森,姜囡,齐志坤. 基于注意力机制的卷积循环网络语音降噪. 科学技术与工程. 2022(05): 1950-1957 . 百度学术
    11. 李小平,白超. 一种基于多模态信息融合的火车司机疲劳驾驶检测方法. 铁道学报. 2022(06): 56-65 . 百度学术
    12. 胡勉宁,李欣,李明锋,孙海春. 面向诈骗短信息识别的融合多策略数据增强技术研究. 信息网络安全. 2022(10): 121-128 . 百度学术
    13. 孙立辉,曹丽静,张竟雄. 基于升降编解码全卷积神经网络语音增强技术. 智能计算机与应用. 2021(02): 19-22 . 百度学术
    14. 刘元,匡文凯,苏盛,李彬. 基于双通道能量差的环网柜局放信号消噪方法. 仪器仪表学报. 2021(02): 218-227 . 百度学术
    15. 台文鑫,王钇翔,李森,蓝天,刘峤. 基于动态选择机制的低信噪比单声道语音增强算法. 计算机应用研究. 2021(09): 2604-2608 . 百度学术
    16. 祁晓,赵连玉. 基于多频带谱减法的老年人语音增强算法的研究. 电声技术. 2020(05): 34-37 . 百度学术
    17. 梁力,莫晓毅,柯华强. 基于语音识别技术的测试平台研究. 科技视界. 2020(31): 17-18 . 百度学术
    18. 曹洁,周尧风,于泓,李晓旭. 基于SI-SDR优化的生成对抗网络语音增强方法. 华中科技大学学报(自然科学版). 2020(11): 17-23 . 百度学术
    19. 许春冬,徐琅,周滨,凌贤鹏. 单通道语音增强技术的研究现状与发展趋势. 江西理工大学学报. 2020(05): 55-64 . 百度学术

    其他类型引用(43)

计量
  • 文章访问数:  1293
  • HTML全文浏览量:  0
  • PDF下载量:  809
  • 被引次数: 62
出版历程
  • 发布日期:  2015-07-31

目录

    /

    返回文章
    返回