高级检索

    基于可信第三方的高效可分电子现金方案

    A Trustee-Based and Efficient Divisible E-Cash Scheme

    • 摘要: 可分电子系统满足用户购买价值为2\+l的电子现金,并能拆分成多块进行消费.在该系统中需要保证用户的匿名性,同时又能查找出那些存在恶意行为的用户.2015年,Canard提出了第1个在随机预言机和标准模型下安全且高效实用的方案.其中对于提现价值为2\+l的电子现金,其复杂度是指数级的(需要2\+l次配对操作).提现操作中需要的高计算量为处理大额电子现金留下了隐患,当金额达到2\+20时,会给系统造成严重的负担;当金额达到2\+30时,系统几乎处于崩溃状态.鉴于以上潜在的不足,在Canard的基础上,通过引入可信第三方,提出了一个基于可信第三方的高效电子现金方案,作为对Canard方案的改进版.在方案中,结合可信第三方,减少了公共参数的数量和零知识证明的次数.特别是在提现的操作上,其计算复杂度与l是成线性相关的,为解决大额电子现金问题提供了可能.

       

      Abstract: Divisible e-cash systems allow users to purchase a coin of value 2\+l and spend it part by part. This system not only need to ensure the anonymity of users, but also can detect double-spending behavior from malicious user. In 2015, Canard presented the first efficient divisible e-cash system in both random oracle model and standard model. In the system, for the coin of value 2\+l, the deposit protocol involves up to 2\+l pairing operations. When the value of coin is big, the divisible e-cash system will face challenges. If the value is 2\+20, the system will withstand huge computation pressure; if the value is 2\+30, it will be a state of collapse. For these potential shortcomings, independent of the work of Canard, we propose a more efficient divisible system based on a trusted third-party, as an improved version of Canard’s system. In the scheme, we make use of a trusted third-party, and reduce the number of public parameters and the number of zero-knowledge proof. Especially in the deposit operation, the complexity of deposit protocol is a linear correlation with l, which provides the possibility for solving the problem of large electronic cash.

       

    /

    返回文章
    返回