• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于顶点加权的介度中心近似算法研究

王敏, 王蕾, 冯晓兵, 曹宝香

王敏, 王蕾, 冯晓兵, 曹宝香. 基于顶点加权的介度中心近似算法研究[J]. 计算机研究与发展, 2016, 53(7): 1631-1640. DOI: 10.7544/issn1000-1239.2016.20148355
引用本文: 王敏, 王蕾, 冯晓兵, 曹宝香. 基于顶点加权的介度中心近似算法研究[J]. 计算机研究与发展, 2016, 53(7): 1631-1640. DOI: 10.7544/issn1000-1239.2016.20148355
Wang Min, Wang Lei, Feng Xiaobing, Cao Baoxiang. An Approximation Algorithm of Betweenness Centrality Based on Vertex Weighted[J]. Journal of Computer Research and Development, 2016, 53(7): 1631-1640. DOI: 10.7544/issn1000-1239.2016.20148355
Citation: Wang Min, Wang Lei, Feng Xiaobing, Cao Baoxiang. An Approximation Algorithm of Betweenness Centrality Based on Vertex Weighted[J]. Journal of Computer Research and Development, 2016, 53(7): 1631-1640. DOI: 10.7544/issn1000-1239.2016.20148355
王敏, 王蕾, 冯晓兵, 曹宝香. 基于顶点加权的介度中心近似算法研究[J]. 计算机研究与发展, 2016, 53(7): 1631-1640. CSTR: 32373.14.issn1000-1239.2016.20148355
引用本文: 王敏, 王蕾, 冯晓兵, 曹宝香. 基于顶点加权的介度中心近似算法研究[J]. 计算机研究与发展, 2016, 53(7): 1631-1640. CSTR: 32373.14.issn1000-1239.2016.20148355
Wang Min, Wang Lei, Feng Xiaobing, Cao Baoxiang. An Approximation Algorithm of Betweenness Centrality Based on Vertex Weighted[J]. Journal of Computer Research and Development, 2016, 53(7): 1631-1640. CSTR: 32373.14.issn1000-1239.2016.20148355
Citation: Wang Min, Wang Lei, Feng Xiaobing, Cao Baoxiang. An Approximation Algorithm of Betweenness Centrality Based on Vertex Weighted[J]. Journal of Computer Research and Development, 2016, 53(7): 1631-1640. CSTR: 32373.14.issn1000-1239.2016.20148355

基于顶点加权的介度中心近似算法研究

基金项目: 国家“八六三”高技术研究发展计划基金项目(2015AA011505);国家自然科学基金项目(61402445,61303053,61202055,61221062)This work was supported by the National High Technology Research and Development Program of China (863 Program) (2015AA011505) and the National Natural Science Foundation of China (61402445,61303053,61202055,61221062).
详细信息
  • 中图分类号: TP311

An Approximation Algorithm of Betweenness Centrality Based on Vertex Weighted

  • 摘要: 介度中心(betweenness centrality, BC)是衡量网络节点重要程度的一个广泛使用的指标,最快的介度中心算法需要计算n次单源最短路径,时间复杂度是O(V×E).介度中心算法的瓶颈就在于计算量太大,导致运行时间太长,无法在实际中应用,因此需要从近似算法的角度降低介度中心算法的计算量.目前介度中心近似算法在计算自然图时对计算量的降低并不显著.为了进一步降低介度中心算法的计算量,提出了一种基于顶点加权的介度中心近似算法,该算法采用顶点加权的方式将多次重复计算过程累加到一次计算过程上,结合选择高影响力源点的方法可以大大降低介度中心算法的计算量,加速比平均达到了25倍,并且最大误差百分比小于0.01%.
    Abstract: Betweenness centrality (BC) is a widely used indicator to measure the importance of network vertices. Currently the fastest time complexity of the algorithm is O(V×E). When computing the BC of vertices in networks, we need to do n times searches of single source shortest path. In big data era, networks have more nodes and edges, and the amount of calculation of BC algorithm is large. The huge amount of calculation makes the algorithm need a long time to compute each vertices’ BC value, and the algorithm cannot be applied in practice. The related work focuses on approximation to reduce the running time of BC algorithm, but they also can not reduce the amount of calculation of BC algorithm significantly. In order to further reduce the amount of the calculation of BC algorithm, we propose a vertex weighted approximation algorithm to reduce the amount of calculation of BC algorithm, and the algorithm can make the calculation process be repeated many times to accumulate on a calculation by vertex weighted and select high-impact vertex as source to compute BC. We can reduce the amount of calculation significantly in this way, and meet the requirement of lower error rate and high performance. The approximation algorithm of BC based on vertex weighted can achieve 25 times speedup, and the error rate is lower than percentage of 0.01.
  • 期刊类型引用(36)

    1. 郭羽含,钱一炀,钱亚冠. 基于时空预测的多策略网约车调度算法. 计算机应用研究. 2025(04): 1034-1043 . 百度学术
    2. 韩晓,陈昕,肇毓. 高速公路施工控制区动态交通流预测的LSTM-BiGRU-Attention模型. 交通科技与经济. 2024(01): 17-23 . 百度学术
    3. 朱仕威,叶宝林,吴维敏. 基于深度学习的短时交通流预测方法综述与仿真研究. 软件导刊. 2024(02): 182-193 . 百度学术
    4. 余径舟,何其昌,时轮,杨冬梅. 基于深度学习的白车身焊接路径智能规划方法. 机械设计与研究. 2024(03): 116-121 . 百度学术
    5. 赖培源,李程,王增辉,王昌栋,廖德章. 基于图提示微调的交通流量预测. 计算机研究与发展. 2024(08): 2020-2029 . 本站查看
    6. 焦鹏飞,陈舒欣,郭翾,何东晓,刘栋. 图神经常微分方程综述. 计算机研究与发展. 2024(08): 2045-2066 . 本站查看
    7. 魏荣. 基于注意力机制的短时交通流预测模型研究. 交通科技与管理. 2024(20): 42-44 . 百度学术
    8. 邹正标,刘毅志,廖祝华,赵肄江. 动态交通流量预测的时空注意力图卷积网络. 山东大学学报(工学版). 2024(05): 50-61 . 百度学术
    9. 侯越,周瑞娟,张鑫. 基于自适应动态关联矩阵的时空一致性交通流预测研究. 兰州交通大学学报. 2024(06): 42-53 . 百度学术
    10. 张合川,邓琮,张献军,杨尚川. 基于CEEMDAN-DBSCAN-ICA-LSTM模型的道路交通流量预测研究. 公路. 2024(12): 355-365 . 百度学术
    11. 姜建国,陈鹏,郭晓丽,佟麟阁,万成德. 基于双注意力机制的Seq2Seq短期负荷预测. 吉林大学学报(信息科学版). 2023(02): 251-258 . 百度学术
    12. 汤兴恒,郭强,徐天慧,张彩明. 基于多尺度核自适应滤波的股票收益预测. 计算机应用. 2023(05): 1385-1393 . 百度学术
    13. 游兰,张涵钰,韩凡宇,金红,崔海波,何渡,汪坤钰,郑巧仙. 面向城市人群时空热点预测的混合神经网络. 计算机技术与发展. 2023(06): 194-201 . 百度学术
    14. 郭超,陈佳,汪悦. 基于图卷积神经网络的无线基站流量预测研究. 邮电设计技术. 2023(06): 36-40 . 百度学术
    15. 温雯,刘莹,蔡瑞初,郝志峰. 面向多粒度交通流预测的时空深度回归模型. 广东工业大学学报. 2023(04): 1-8 . 百度学术
    16. 林涵,郝正航,郭家鹏,吴育栋. 基于TCA-CNN-LSTM的短期负荷预测研究. 电测与仪表. 2023(08): 73-80 . 百度学术
    17. 李凯,任炳昱,王佳俊,关涛,余佳. 基于CEEMDAN-Transformer的灌浆流量混合预测模型. 水利学报. 2023(07): 806-817 . 百度学术
    18. 董红斌,韩爽,付强. 基于AR与DNN联合模型的地理传感器时间序列预测. 计算机科学. 2023(11): 41-48 . 百度学术
    19. 周正阳,刘浩,王琨,王鹏焜,王旭,汪炀. 基于教师-学生时空半监督网络的城市事件预测方法. 电子学报. 2023(12): 3557-3571 . 百度学术
    20. 倪庆剑,彭文强,张志政,翟玉庆. 基于信息增强传输的时空图神经网络交通流预测. 计算机研究与发展. 2022(02): 282-293 . 本站查看
    21. 李晓,卢先领. 基于双重注意力机制和GRU网络的短期负荷预测模型. 计算机工程. 2022(02): 291-296+305 . 百度学术
    22. 田帅帅,殷礼胜,何怡刚. 基于时空多维的VMD-GAT-Attention短时交通流量组合预测模型. 合肥工业大学学报(自然科学版). 2022(02): 176-185 . 百度学术
    23. 何芸. 基于LGBM模型的城市道路交通流量预测研究. 电子技术与软件工程. 2022(03): 259-262 . 百度学术
    24. 李朝阳,李琳,陶晓辉. 面向动态交通流预测的双流图卷积网络. 计算机科学与探索. 2022(02): 384-394 . 百度学术
    25. 张玺君,陶冶,张冠男,余光杰. 基于ACapsGRU的短时交通流预测研究. 华中科技大学学报(自然科学版). 2022(04): 51-56 . 百度学术
    26. 冯思芸,施振佺,曹阳. 基于全局时空特性的城市路网交通速度预测模型. 计算机工程. 2022(05): 112-117 . 百度学术
    27. 吕成双,王彤. 基于CATTSTS模型的国际原油价格预测研究. 价格月刊. 2022(05): 8-13 . 百度学术
    28. 侯越,崔菡珂,邓志远. 横向相关性及参数影响下的车道级交通预测. 公路交通科技. 2022(05): 122-130 . 百度学术
    29. 郭嘉宸,杨宇燊,王研,毛仕龙,孙丽珺. 精细化短时交通流预测模型及迁移部署方案. 计算机应用. 2022(06): 1748-1755 . 百度学术
    30. 石兵,黄茜子,宋兆翔,徐建桥. 基于用户激励的共享单车调度策略. 计算机应用. 2022(11): 3395-3403 . 百度学术
    31. 杜柳青,李仁杰,余永维. 基于注意力机制的时空卷积数控机床热误差模型研究. 农业机械学报. 2021(05): 404-411 . 百度学术
    32. 龙望晨,王索,罗定福,刘红. 深度神经网络在城市交通预测中的应用. 电脑知识与技术. 2021(16): 183-185+192 . 百度学术
    33. 张晴峰. 基于大数据的图书馆流量预测方法研究. 信息与电脑(理论版). 2021(11): 189-191 . 百度学术
    34. 殷礼胜,孙双晨,魏帅康,田帅帅,何怡刚. 基于自适应VMD-Attention-BiLSTM的交通流组合预测模型. 电子测量与仪器学报. 2021(07): 130-139 . 百度学术
    35. 张阳,胡月,辛东嵘. 一种考虑时空关联的深度学习短时交通流预测方法. 智能科学与技术学报. 2021(02): 172-178 . 百度学术
    36. 宋瑞蓉,王斌君,仝鑫,刘文懋. 融合多维时空特征的交通流量预测模型. 科学技术与工程. 2021(31): 13439-13446 . 百度学术

    其他类型引用(79)

计量
  • 文章访问数:  1155
  • HTML全文浏览量:  0
  • PDF下载量:  580
  • 被引次数: 115
出版历程
  • 发布日期:  2016-06-30

目录

    /

    返回文章
    返回