Capture-Aware Bayesian Tag Estimation for Dense RFID Tags Environment
-
摘要: 动态帧时隙Aloha算法是一种常用的被动式射频识别(radio frequency identification, RFID)标签防冲突算法.在该算法中,帧长需要动态设置以保证较高的识别效率.通常,帧长的设置与标签数和捕获效应的发生概率相关.传统的估计算法虽然可以估计出标签数和捕获效应的发生概率,但是在稠密RFID标签环境下,标签数可能远大于初始帧长,其估计误差会显著增加.为了解决传统算法无法应用于稠密RFID标签环境的问题,提出了捕获感知贝叶斯标签估计,并且给出了非等长时隙下最优帧长的设置方法.从实验结果来看,提出算法的估计误差在稠密RFID标签环境下显著低于传统算法,而且根据估计结果设置帧长所得到的识别效率也高于传统算法.Abstract: Dynamic framed slotted Aloha algorithm is one kind of commonly used passive radio frequency identification (RFID) tag anti-collision algorithms. In the algorithm, the frame length requires dynamical set to ensure high identification efficiency. Generally, the settings of the frame length are associated with the number of tags and the probability of capture effect. Traditional estimation algorithms can estimate the number of tags and the probability of capture effect, but the number of tags is greater than an initial frame length when it is in dense RFID tags environment, and the estimation errors will increase significantly. In order to solve the problem that the conventional algorithms can not be applied to dense RFID tags environment, capture-aware Bayesian tag estimation is proposed in the paper, and the settings of optimal frame length with non-isometric slots are given. From the experimental results, the proposed algorithms have significantly lower estimation errors than traditional algorithms in dense RFID tags environment. And the identification efficiency got by setting the frame length according to the estimation results is also higher than that of traditional algorithms.
-
-
期刊类型引用(11)
1. 袁子轩,张峰,许岗,魏光辉,石永强. 融合MAML和TGAT的机会网络动态链路预测模型. 小型微型计算机系统. 2024(12): 2957-2963 . 百度学术
2. 曹志威,樊志杰,王青杨,韩伟力,李欣. 一种降噪自编码器的复杂网络链路预测算法. 小型微型计算机系统. 2023(03): 665-672 . 百度学术
3. 刘林峰,于子兴,祝贺. 基于门控循环单元的移动社会网络链路预测方法. 计算机研究与发展. 2023(03): 705-716 . 本站查看
4. 王曙燕,巩婧怡. 融合节点标签与强弱关系的链路预测算法. 计算机工程与应用. 2022(18): 71-77 . 百度学术
5. 张瑾,朱桂祥,王宇琛,郑烁佳,陈镜潞. 基于异质图表达学习的跨境电商推荐模型. 电子与信息学报. 2022(11): 4008-4017 . 百度学术
6. 唐明虎. 基于多种信息组合模式的非负矩阵分解链路预测模型. 计算机应用研究. 2021(05): 1393-1397+1408 . 百度学术
7. 顾秋阳,吴宝,池仁勇. 基于高阶路径相似度的复杂网络链路预测方法. 通信学报. 2021(07): 61-69 . 百度学术
8. 许爽,李淼磊. 基于子图特征的科学家合作网络链路预测. 大连民族大学学报. 2020(01): 51-63 . 百度学术
9. 张尚田,陈光,邱天. 基于融合特征的LSTM评分预测. 计算机与现代化. 2020(03): 49-53+59 . 百度学术
10. 顾秋阳,琚春华,吴功兴. 基于子图演化与改进蚁群优化算法的社交网络链路预测方法. 通信学报. 2020(12): 21-35 . 百度学术
11. 李琦,王智强,梁吉业. 基于PU学习的链接预测方法. 模式识别与人工智能. 2019(09): 793-799 . 百度学术
其他类型引用(18)
计量
- 文章访问数: 1062
- HTML全文浏览量: 0
- PDF下载量: 602
- 被引次数: 29