• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

短文本理解研究

王仲远, 程健鹏, 王海勋, 文继荣

王仲远, 程健鹏, 王海勋, 文继荣. 短文本理解研究[J]. 计算机研究与发展, 2016, 53(2): 262-269. DOI: 10.7544/issn1000-1239.2016.20150742
引用本文: 王仲远, 程健鹏, 王海勋, 文继荣. 短文本理解研究[J]. 计算机研究与发展, 2016, 53(2): 262-269. DOI: 10.7544/issn1000-1239.2016.20150742
Wang Zhongyuan, Cheng Jianpeng, Wang Haixun, Wen Jirong. Short Text Understanding: A Survey[J]. Journal of Computer Research and Development, 2016, 53(2): 262-269. DOI: 10.7544/issn1000-1239.2016.20150742
Citation: Wang Zhongyuan, Cheng Jianpeng, Wang Haixun, Wen Jirong. Short Text Understanding: A Survey[J]. Journal of Computer Research and Development, 2016, 53(2): 262-269. DOI: 10.7544/issn1000-1239.2016.20150742
王仲远, 程健鹏, 王海勋, 文继荣. 短文本理解研究[J]. 计算机研究与发展, 2016, 53(2): 262-269. CSTR: 32373.14.issn1000-1239.2016.20150742
引用本文: 王仲远, 程健鹏, 王海勋, 文继荣. 短文本理解研究[J]. 计算机研究与发展, 2016, 53(2): 262-269. CSTR: 32373.14.issn1000-1239.2016.20150742
Wang Zhongyuan, Cheng Jianpeng, Wang Haixun, Wen Jirong. Short Text Understanding: A Survey[J]. Journal of Computer Research and Development, 2016, 53(2): 262-269. CSTR: 32373.14.issn1000-1239.2016.20150742
Citation: Wang Zhongyuan, Cheng Jianpeng, Wang Haixun, Wen Jirong. Short Text Understanding: A Survey[J]. Journal of Computer Research and Development, 2016, 53(2): 262-269. CSTR: 32373.14.issn1000-1239.2016.20150742

短文本理解研究

基金项目: 国家“九七三”基础研究发展计划基金项目(2014CB340403);中央高校基本科研业务费专项资金(14XNLF05)
详细信息
  • 中图分类号: TP391

Short Text Understanding: A Survey

  • 摘要: 短文本理解是一项对于机器智能至关重要但又充满挑战的任务.这项任务有益于众多应用场景,如搜索引擎、自动问答、广告和推荐系统.完成这些应用的首要步骤是将输入文本转化为机器可以诠释的形式,即帮助机器“理解”短文本的含义.基于这一目标,许多方法利用外来知识源来解决短文本中语境信息不足的问题.通过总结短文本理解领域的相关工作,介绍了基于向量的短文本理解框架.同时,探讨了短文本理解领域未来的研究方向.
    Abstract: Short text understanding is an important but challenging task relevant for machine intelligence. The task can potentially benefit various online applications, such as search engines, automatic question-answering, online advertising and recommendation systems. In all these applications, the necessary first step is to transform an input text into a machine-interpretable representation, namely to “understand” the short text. To achieve this goal, various approaches have been proposed to leverage external knowledge sources as a complement to the inadequate contextual information accompanying short texts. This survey reviews current progress in short text understanding with a focus on the vector based approaches, which aim to derive the vectorial encoding for a short text. We also explore a few potential research topics in the field of short text understanding.
计量
  • 文章访问数:  3478
  • HTML全文浏览量:  2
  • PDF下载量:  3290
  • 被引次数: 0
出版历程
  • 发布日期:  2016-01-31

目录

    /

    返回文章
    返回