高级检索

    基于关键词精化和句法树的商品图像句子标注

    Caption Generation from Product Image Based on Tag Refinement and Syntactic Tree

    • 摘要: 商品图像句子标注是图像标注中一项既有趣又富有挑战的研究任务.噪声单词干扰和句法结构错误是该项研究的制约因素,针对噪声单词干扰,提出关键词精化思想:用绝对排序特征强化关键词权重,完成第1次关键词精化;计算单词的语义相关度评分,进一步优选能准确刻画图像内容的单词,完成第2次关键词精化.设计词序列"拼积木"算法,把关键词拼装成N元词序列.针对句法结构错误,提出句法树思想:基于N元词序列和句法子树递归地构建一棵完整的句法树,遍历该树叶子结点输出句子,标注商品图像.实验结果表明:关键词精化和句法树均有助于改善标注性能,句中的语义信息兼容性和句法模式兼容性得以保持,句子内容更连贯、流畅.

       

      Abstract: Automatic caption generation from product image is an interesting and challenging research task of image annotation. However, noisy words interference and inaccurate syntactic structures are the key problems that affect the research heavily. For the first problem, a novel idea of tag refinement (TR) is presented: absolute rank (AR) feature is applied to strengthen the key words weights. The process is called the first tag refinement. The semantic correlation score of each word is calculated in turn and the words that have the tightest semantic correlations with images content are summarized for caption generation. The process is called the second tag refinement. A novel natural language generation (NLG) algorithm named word sequence blocks building (WSBB) is designed accordingly to generate N gram word sequences. For the second problem, a novel idea of syntactic tree (ST) is presented: a complete syntactic tree is constructed recursively based on the N gram word sequences and predefined syntactic subtrees. Finally, sentence is generated by traversing all leaf nodes of the syntactic tree. Experimental results show both the tag refinement and the syntactic tree help to improve the annotation performance. More importantly, not only the semantic information compatibility but also the syntactic mode compatibility of the generated sentence is better retained simultaneously. Moreover, the sentence contains abundant semantic information as well as coherent syntactic structure.

       

    /

    返回文章
    返回