• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

一种基于时间窗口的轻量级实时运动识别算法

董理骅, 刘强, 陈海明, 崔莉

董理骅, 刘强, 陈海明, 崔莉. 一种基于时间窗口的轻量级实时运动识别算法[J]. 计算机研究与发展, 2017, 54(12): 2731-2740. DOI: 10.7544/issn1000-1239.2017.20150462
引用本文: 董理骅, 刘强, 陈海明, 崔莉. 一种基于时间窗口的轻量级实时运动识别算法[J]. 计算机研究与发展, 2017, 54(12): 2731-2740. DOI: 10.7544/issn1000-1239.2017.20150462
Dong Lihua, Liu Qiang, Chen Haiming, Cui Li. A Time Window Based Lightweight Real-Time Activity Recognition Method[J]. Journal of Computer Research and Development, 2017, 54(12): 2731-2740. DOI: 10.7544/issn1000-1239.2017.20150462
Citation: Dong Lihua, Liu Qiang, Chen Haiming, Cui Li. A Time Window Based Lightweight Real-Time Activity Recognition Method[J]. Journal of Computer Research and Development, 2017, 54(12): 2731-2740. DOI: 10.7544/issn1000-1239.2017.20150462
董理骅, 刘强, 陈海明, 崔莉. 一种基于时间窗口的轻量级实时运动识别算法[J]. 计算机研究与发展, 2017, 54(12): 2731-2740. CSTR: 32373.14.issn1000-1239.2017.20150462
引用本文: 董理骅, 刘强, 陈海明, 崔莉. 一种基于时间窗口的轻量级实时运动识别算法[J]. 计算机研究与发展, 2017, 54(12): 2731-2740. CSTR: 32373.14.issn1000-1239.2017.20150462
Dong Lihua, Liu Qiang, Chen Haiming, Cui Li. A Time Window Based Lightweight Real-Time Activity Recognition Method[J]. Journal of Computer Research and Development, 2017, 54(12): 2731-2740. CSTR: 32373.14.issn1000-1239.2017.20150462
Citation: Dong Lihua, Liu Qiang, Chen Haiming, Cui Li. A Time Window Based Lightweight Real-Time Activity Recognition Method[J]. Journal of Computer Research and Development, 2017, 54(12): 2731-2740. CSTR: 32373.14.issn1000-1239.2017.20150462

一种基于时间窗口的轻量级实时运动识别算法

基金项目: 国家自然科学基金项目(61672498)
详细信息
  • 中图分类号: TP391.4

A Time Window Based Lightweight Real-Time Activity Recognition Method

  • 摘要: 利用手机或可穿戴设备实时识别人的运动状态,有助于人们及时了解自身状况,进行科学的锻炼.现有高准确度运动识别算法大都具有较高的计算代价和存储代价,难以直接移植到手机和可穿戴设备上,且这些算法难以根据用户习惯校正识别模型.提出了一种基于时间窗口的轻量级实时运动识别算法EasiSports,利用手机或可穿戴设备中的加速度传感器,在多种情况下利用k-means聚类等方法在设备本地建立用户个人运动识别模型,使用SVM分类器实时识别坐、步行、跑步、上楼梯、下楼梯5种状态,计算量较小,适用于手机和可穿戴设备平台.实验表明:该算法对前述5种状态的识别准确度可达到87.45%,识别算法运行时间相较其他算法可获得30%以上的性能提升.
    Abstract: Lack of exercise or excessive exercise would damage our body, so real-time human activity recognition using smart-phones or wearable devices can keep people aware of their physical status and contribute to proper exercise. However, most of existing high-precision activity recognition algorithms cannot directly apply to smart-phones or wearable devices due to their high computational cost and large storage request. Meanwhile, these algorithms cannot update recognition model according to user behavior. We propose a time window based lightweight real-time activity recognition method (EasiSports) which uses SVM to recognize five kinds of human activity status including sitting, walking, running, walking upstairs and downstairs with one accelerate sensor and fair low computational cost. Our method can set up personalized activity recognition model in many cases using k-means clustering and preset data to further improve the accuracy and reduce computational cost. Experiments show that our method can achieve an accuracy of 87.45% in recognizing five kinds of human activity status above mentioned. The performance of our algorithm can improve more than 30% compared with other algorithms.
  • 期刊类型引用(9)

    1. 杨海龙,靳新华. 基于ECC复合加密的医院网络隐私信息安全保护方法. 自动化技术与应用. 2024(08): 140-143+166 . 百度学术
    2. 贾卉楠,王斌. 基于移动群智感知的隐私保护研究. 佳木斯大学学报(自然科学版). 2024(09): 16-18+69 . 百度学术
    3. 杨小琴,朱玉全. 网络加密数据跨平台迁移自适应决策模型构建. 计算机仿真. 2023(01): 437-440+516 . 百度学术
    4. 蒋沥泉,秦志光. 基于属性隐藏的高效去中心化的移动群智数据共享方案. 电子科技大学学报. 2023(06): 915-924 . 百度学术
    5. 蔡波. 马尔可夫预测的移动群智感知网络日志信息收集. 西安工程大学学报. 2022(01): 115-120 . 百度学术
    6. 佘晓萌 ,杜洋 ,马文静 ,殷赵霞 . 基于像素预测和块标记的图像密文可逆信息隐藏. 计算机研究与发展. 2022(09): 2089-2100 . 本站查看
    7. 王磊,陈磊,张明儒,魏敏,李晋先. 面向数据库查询的非结构化数据融合存储系统. 电子设计工程. 2022(24): 148-152 . 百度学术
    8. 李卓,宋子晖,沈鑫,陈昕. 边缘计算支持下的移动群智感知本地差分隐私保护机制. 计算机应用. 2021(09): 2678-2686 . 百度学术
    9. 熊金波,毕仁万,田有亮,刘西蒙,马建峰. 移动群智感知安全与隐私:模型、进展与趋势. 计算机学报. 2021(09): 1949-1966 . 百度学术

    其他类型引用(13)

计量
  • 文章访问数:  1147
  • HTML全文浏览量:  7
  • PDF下载量:  426
  • 被引次数: 22
出版历程
  • 发布日期:  2017-11-30

目录

    /

    返回文章
    返回