• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

网络媒体大数据流异构多模态目标识别策略(201905撤稿)

文孟飞, 刘伟荣, 胡超

文孟飞, 刘伟荣, 胡超. 网络媒体大数据流异构多模态目标识别策略(201905撤稿)[J]. 计算机研究与发展, 2017, 54(1): 71-79. DOI: 10.7544/issn1000-1239.2017.20150707
引用本文: 文孟飞, 刘伟荣, 胡超. 网络媒体大数据流异构多模态目标识别策略(201905撤稿)[J]. 计算机研究与发展, 2017, 54(1): 71-79. DOI: 10.7544/issn1000-1239.2017.20150707
Wen Mengfei, Liu Weirong, Hu Chao. A Heterogeneous Multimodal Object Recognition Strategy of the Massive Network Data Flow(201905Retraction)[J]. Journal of Computer Research and Development, 2017, 54(1): 71-79. DOI: 10.7544/issn1000-1239.2017.20150707
Citation: Wen Mengfei, Liu Weirong, Hu Chao. A Heterogeneous Multimodal Object Recognition Strategy of the Massive Network Data Flow(201905Retraction)[J]. Journal of Computer Research and Development, 2017, 54(1): 71-79. DOI: 10.7544/issn1000-1239.2017.20150707
文孟飞, 刘伟荣, 胡超. 网络媒体大数据流异构多模态目标识别策略(201905撤稿)[J]. 计算机研究与发展, 2017, 54(1): 71-79. CSTR: 32373.14.issn1000-1239.2017.20150707
引用本文: 文孟飞, 刘伟荣, 胡超. 网络媒体大数据流异构多模态目标识别策略(201905撤稿)[J]. 计算机研究与发展, 2017, 54(1): 71-79. CSTR: 32373.14.issn1000-1239.2017.20150707
Wen Mengfei, Liu Weirong, Hu Chao. A Heterogeneous Multimodal Object Recognition Strategy of the Massive Network Data Flow(201905Retraction)[J]. Journal of Computer Research and Development, 2017, 54(1): 71-79. CSTR: 32373.14.issn1000-1239.2017.20150707
Citation: Wen Mengfei, Liu Weirong, Hu Chao. A Heterogeneous Multimodal Object Recognition Strategy of the Massive Network Data Flow(201905Retraction)[J]. Journal of Computer Research and Development, 2017, 54(1): 71-79. CSTR: 32373.14.issn1000-1239.2017.20150707

网络媒体大数据流异构多模态目标识别策略(201905撤稿)

基金项目: 湖南省教育科学“十二五”规划重点资助项目(XJK014AJC001);国家自然科学基金项目(61379111,61672539,61202342) This work was supported by the Key Project of Educational and Scientific Foundation of Hunan Province During the 12th Five-Year Plan Period(XJK014AJC001) and the National Natural Science Foundation of China (61379111,61672539,61202342).
详细信息
  • 中图分类号: TP391

A Heterogeneous Multimodal Object Recognition Strategy of the Massive Network Data Flow(201905Retraction)

  • 摘要: 如何对海量的网络媒体大数据进行准确地目标识别,是当前的一个研究热点和难点.针对此问题提出一种利用媒体流时间相关特性的异构多模态目标识别策略.首先基于媒体流中同时存在音频和视频信息的特征,建立一种异构多模态深度学习结构;结合卷积神经网络(convolutional neural network, CNN)和限制波尔兹曼机(restricted Boltzmann machine, RBM)的算法优点,对音频信息和视频信息分别并行处理,这种异构模式可以充分利用不同深度神经网络的特点;然后生成基于典型关联分析的共享特征表示,并进一步利用时间相关特性进行参数的优化.3种对比实验用来验证所提策略的效果,首先将策略与单一模态算法进行对比;然后再在复合的数据库上建立对比实验;最后在网络视频库上建立对比实验,这些对比实验验证了策略的有效性.
    Abstract: It is a research hot to achieve the object recognition of the massive network media data nowadays. To address the problem, an object recognition strategy is proposed to handle the massive network media data flow which adopts heterogeneous multimodal structure while utilizing the temporal coherence. Firstly, based on the video and audio co-existing feature of media network data, a heterogeneous multimodal structure is constructed to incorporate the convolutional neural network(CNN) and the restricted Boltzmann machine(RBM). The audio information is processed by restricted Boltzmann machine and the video information is processed by convolutional neural network respectively. The heterogeneous multimodal structure can exploit the merits of different deep learning neural networks. After that, the share characteristic representation are generated by using the canonical correlation analysis(CCA). Then the temporal coherence of video frame is utilized to improve the recognizing accuracy further. There kinds of experiments are adopted to validate the effectiveness of the proposed strategy. The first type of experiment compares the proposed strategy with single-mode algorithm. The second type of experiment illustrates the result based on composite database. Finally the videos coming from real websites are extracted to compare the proposed strategy with other algorithms. These experiments prove the effectiveness of the proposed heterogeneous multimodal strategy.
  • 期刊类型引用(12)

    1. 刘强,朱金森,赵龙龙,沙宇晨,刘尚东,季一木. 基于字句动态特征和自注意力的情感分析方法. 数据采集与处理. 2024(01): 193-203 . 百度学术
    2. 韩虎,孟甜甜. 面向语法加权图文本的方面情感三元组抽取. 北京航空航天大学学报. 2024(02): 409-418 . 百度学术
    3. 郭磊,贾真,李天瑞. 面向方面级情感分析的交互式关系图注意力网络. 计算机应用. 2024(03): 696-701 . 百度学术
    4. 杨锐,刘永坚,解庆,刘平峰. 基于Graph-LSTMs的双重位置感知方面级情感分类. 计算机应用与软件. 2024(04): 165-172 . 百度学术
    5. 刘辉,马祥,张琳玉,何如瑾. 融合匹配长短时记忆网络和语法距离的方面级情感分析模型. 计算机应用. 2023(01): 45-50 . 百度学术
    6. 代祖华,刘园园,狄世龙. 语义增强的图神经网络方面级文本情感分析. 计算机工程. 2023(06): 71-80 . 百度学术
    7. 孟甜甜,韩虎,吴渊航. 面向方面抽取与情感分类的多任务联合建模. 计算机科学与探索. 2023(07): 1669-1679 . 百度学术
    8. 程帆,王芳,黄树成. 基于混合编码与双通道GCN的方面级情感分析. 软件导刊. 2023(07): 15-20 . 百度学术
    9. 孙天伟,杨长春,顾晓清,谈国胜. 结合共现网络的方面级情感分析研究. 计算机工程与应用. 2023(20): 111-118 . 百度学术
    10. 张文钧,蒋良孝,张欢,陈龙. 一种双层贝叶斯模型:随机森林朴素贝叶斯. 计算机研究与发展. 2021(09): 2040-2051 . 本站查看
    11. 韩虎,吴渊航,秦晓雅. 面向方面级情感分析的交互图注意力网络模型. 电子与信息学报. 2021(11): 3282-3290 . 百度学术
    12. 巫浩盛,缪裕青,张万桢,周明,文益民. 基于距离与图卷积网络的方面级情感分析. 计算机应用研究. 2021(11): 3274-3278+3321 . 百度学术

    其他类型引用(33)

计量
  • 文章访问数:  1200
  • HTML全文浏览量:  4
  • PDF下载量:  16
  • 被引次数: 45
出版历程
  • 发布日期:  2016-12-31

目录

    /

    返回文章
    返回