A Heterogeneous Multimodal Object Recognition Strategy of the Massive Network Data Flow(201905Retraction)
-
摘要: 如何对海量的网络媒体大数据进行准确地目标识别,是当前的一个研究热点和难点.针对此问题提出一种利用媒体流时间相关特性的异构多模态目标识别策略.首先基于媒体流中同时存在音频和视频信息的特征,建立一种异构多模态深度学习结构;结合卷积神经网络(convolutional neural network, CNN)和限制波尔兹曼机(restricted Boltzmann machine, RBM)的算法优点,对音频信息和视频信息分别并行处理,这种异构模式可以充分利用不同深度神经网络的特点;然后生成基于典型关联分析的共享特征表示,并进一步利用时间相关特性进行参数的优化.3种对比实验用来验证所提策略的效果,首先将策略与单一模态算法进行对比;然后再在复合的数据库上建立对比实验;最后在网络视频库上建立对比实验,这些对比实验验证了策略的有效性.Abstract: It is a research hot to achieve the object recognition of the massive network media data nowadays. To address the problem, an object recognition strategy is proposed to handle the massive network media data flow which adopts heterogeneous multimodal structure while utilizing the temporal coherence. Firstly, based on the video and audio co-existing feature of media network data, a heterogeneous multimodal structure is constructed to incorporate the convolutional neural network(CNN) and the restricted Boltzmann machine(RBM). The audio information is processed by restricted Boltzmann machine and the video information is processed by convolutional neural network respectively. The heterogeneous multimodal structure can exploit the merits of different deep learning neural networks. After that, the share characteristic representation are generated by using the canonical correlation analysis(CCA). Then the temporal coherence of video frame is utilized to improve the recognizing accuracy further. There kinds of experiments are adopted to validate the effectiveness of the proposed strategy. The first type of experiment compares the proposed strategy with single-mode algorithm. The second type of experiment illustrates the result based on composite database. Finally the videos coming from real websites are extracted to compare the proposed strategy with other algorithms. These experiments prove the effectiveness of the proposed heterogeneous multimodal strategy.
-
-
期刊类型引用(7)
1. 黄玲,黄镇伟,黄梓源,关灿荣,高月芳,王昌栋. 图卷积宽度跨域推荐系统. 计算机研究与发展. 2024(07): 1713-1729 . 本站查看
2. 杨玲玲. 基于HM与LWR算法的电子设备MCS推荐优化. 山西电子技术. 2024(04): 22-24 . 百度学术
3. 郑升旻,付晓东. 利用混合Plackett-Luce模型的不完整序数偏好预测. 计算机应用. 2024(10): 3105-3113 . 百度学术
4. 杜兆芳. 基于协同排序学习算法的移动群智感知任务推荐. 电子产品世界. 2023(09): 64-66+70 . 百度学术
5. 朱丽丽. 随机森林算法下列表级排序学习推荐系统设计. 淮阴工学院学报. 2023(05): 62-68 . 百度学术
6. 曹玉红,赵乙,陈佳桦. 兼容异构数据的稳定评估模型. 小型微型计算机系统. 2021(09): 2011-2016 . 百度学术
7. 林子楠,刘杜钢,潘微科,明仲. 面向推荐系统中有偏和无偏一元反馈建模的三任务变分自编码器. 信息安全学报. 2021(05): 110-127 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 1202
- HTML全文浏览量: 4
- PDF下载量: 16
- 被引次数: 11