Cross-Organizational Workflow Task Allocation Algorithms for Socially Aware Collaborative Computing
-
摘要: 针对社会协同计算带来的不可靠性和社会网络所固有的大规模性问题,提出了支持社会协同计算的跨组织工作流任务分派优化算法.首先,采用了基于工作流任务子网分层的优化模型,将复杂社会网络图进行有效地划分,从而简化了社会网络成员的协作关系评估问题;然后,根据划分后网络的拓扑特征,设计了一种基于工作流任务子网连接点的快速介数中心性计算方法,以高效地选取跨组织业务项目的领导者;最后,采用基于任务子网划分的最短路径近似算法,实现了快速查找跨组织业务过程的协作成员;并且,理论证明了支持社会协同计算的工作流分派算法的可行性.实验结果表明所提算法大幅降低了社会协同计算的复杂性,保证了较高的准确性,解决了工作流任务成员之间的关系评价和人工团队组合优化的时效性问题,为社会协同计算的任务分派提供了一种新的思路.Abstract: Recently, human-interactions are substantial part of Web service-oriented collaborations and cross-organizational business processes. Social networks can help to process crowdsourced workflow tasks among humans in a more effective manner. However, it is challenging to identify a group of prosperous collaborative partners with a leader to work on joint cross-organizational workflow tasks in a prompt and efficient way, especially when the number of alternative candidates is large in collaborative networks. Therefore, in this paper, a new and efficient algorithm has been proposed to find an optimal group in social networks so as to process crowdsourced workflow tasks. Firstly, a set of new concepts has been defined to remodel the social graph; then, a sub-graph connector-based betweenness centrality algorithm has been enhanced to efficiently identify the leader who serves as the host manager of the joint workflow tasks; finally, an efficient algorithm is proposed to find the workflow task members associated with the selected leader by confining the searching space in the set of connector nodes. Theoretical analysis and extensive experiments are conducted for validation purpose; and the experimental results on real data show that our algorithms outperform several existing algorithms in terms of computation time in dealing with the increasing number of workflow task executing candidates.
-
-
期刊类型引用(7)
1. 黄玲,黄镇伟,黄梓源,关灿荣,高月芳,王昌栋. 图卷积宽度跨域推荐系统. 计算机研究与发展. 2024(07): 1713-1729 . 本站查看
2. 杨玲玲. 基于HM与LWR算法的电子设备MCS推荐优化. 山西电子技术. 2024(04): 22-24 . 百度学术
3. 郑升旻,付晓东. 利用混合Plackett-Luce模型的不完整序数偏好预测. 计算机应用. 2024(10): 3105-3113 . 百度学术
4. 杜兆芳. 基于协同排序学习算法的移动群智感知任务推荐. 电子产品世界. 2023(09): 64-66+70 . 百度学术
5. 朱丽丽. 随机森林算法下列表级排序学习推荐系统设计. 淮阴工学院学报. 2023(05): 62-68 . 百度学术
6. 曹玉红,赵乙,陈佳桦. 兼容异构数据的稳定评估模型. 小型微型计算机系统. 2021(09): 2011-2016 . 百度学术
7. 林子楠,刘杜钢,潘微科,明仲. 面向推荐系统中有偏和无偏一元反馈建模的三任务变分自编码器. 信息安全学报. 2021(05): 110-127 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 1512
- HTML全文浏览量: 1
- PDF下载量: 896
- 被引次数: 11