• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

面向大规模数据属性效应控制的核心向量回归机

刘解放, 王士同, 王骏, 邓赵红

刘解放, 王士同, 王骏, 邓赵红. 面向大规模数据属性效应控制的核心向量回归机[J]. 计算机研究与发展, 2017, 54(9): 1979-1991. DOI: 10.7544/issn1000-1239.2017.20160519
引用本文: 刘解放, 王士同, 王骏, 邓赵红. 面向大规模数据属性效应控制的核心向量回归机[J]. 计算机研究与发展, 2017, 54(9): 1979-1991. DOI: 10.7544/issn1000-1239.2017.20160519
Liu Jiefang, Wang Shitong, Wang Jun, Deng Zhaohong. Core Vector Regression for Attribute Effect Control on Large Scale Dataset[J]. Journal of Computer Research and Development, 2017, 54(9): 1979-1991. DOI: 10.7544/issn1000-1239.2017.20160519
Citation: Liu Jiefang, Wang Shitong, Wang Jun, Deng Zhaohong. Core Vector Regression for Attribute Effect Control on Large Scale Dataset[J]. Journal of Computer Research and Development, 2017, 54(9): 1979-1991. DOI: 10.7544/issn1000-1239.2017.20160519
刘解放, 王士同, 王骏, 邓赵红. 面向大规模数据属性效应控制的核心向量回归机[J]. 计算机研究与发展, 2017, 54(9): 1979-1991. CSTR: 32373.14.issn1000-1239.2017.20160519
引用本文: 刘解放, 王士同, 王骏, 邓赵红. 面向大规模数据属性效应控制的核心向量回归机[J]. 计算机研究与发展, 2017, 54(9): 1979-1991. CSTR: 32373.14.issn1000-1239.2017.20160519
Liu Jiefang, Wang Shitong, Wang Jun, Deng Zhaohong. Core Vector Regression for Attribute Effect Control on Large Scale Dataset[J]. Journal of Computer Research and Development, 2017, 54(9): 1979-1991. CSTR: 32373.14.issn1000-1239.2017.20160519
Citation: Liu Jiefang, Wang Shitong, Wang Jun, Deng Zhaohong. Core Vector Regression for Attribute Effect Control on Large Scale Dataset[J]. Journal of Computer Research and Development, 2017, 54(9): 1979-1991. CSTR: 32373.14.issn1000-1239.2017.20160519

面向大规模数据属性效应控制的核心向量回归机

基金项目: 国家自然科学基金项目(61300151,61572236);江苏省杰出青年基金项目(BK20140001);江苏省自然科学基金项目(BK20130155,BK20151299)
详细信息
  • 中图分类号: TP391

Core Vector Regression for Attribute Effect Control on Large Scale Dataset

  • 摘要: 属性效应在现实生活中广泛存在,如果不加以控制,将会严重影响回归学习的性能.针对大规模数据属性效应控制的非线性回归学习问题,提出了快速等均值核心向量回归机(fast equal mean-core vector regression, FEM-CVR).首先基于间隔最大化目标学习准则,通过施加等均值约束条件,提出了等均值支持向量回归机(equal mean-support vector regression, EM-SVR).在此基础上,证明了EM-SVR等价于一个中心约束最小包含球(center constrained-minimum enclosing ball, CC-MEB)问题,然后通过引入近似最小包含球理论,得到原始输入数据集的压缩集即核心集(core set),进一步提出了针对大规模数据属性效应控制的最小包含球快速非线性回归学习方法FEM-CVR,并从理论上对相关性质进行了深入分析.实验表明:该方法能够快速处理针对大规模数据属性效应控制的非线性回归学习问题,具有较好的泛化能力,并且其时间复杂度上限与数据集大小无关,仅与最小包含球近似参数ε有关.
    Abstract: Attribute effect is a kind of phenomenon of data bias caused by sensitive attributes, which widely exists in real world. If not controlled, it will seriously affect the learning performance of regression model. In order to control the attribute effect in nonlinear regression model on large scale biased dataset, a novel fast equal mean-core vector regression (FEM-CVR) is proposed. First, a novel equal mean-support vector regression (EM-SVR) based on margin maximization criterion is proposed by using the constraint condition of equal mean. On this basis, the fact that the optimization problem of EM-SVR is equivalent to a center constrained-minimum enclosing ball (CC-MEB) problem is derived. Then a novel fast minimum enclosing ball based nonlinear regression learning algorithm for attribute effect control on large scale biased dataset, referred to as FEM-CVR, is further proposed by integrating the approximate minimum enclosing ball theory and reducing the original input dataset into the core set. In addition, some fundamental theoretical properties are deeply discussed. Finally, extensive experiments are conducted on synthetic and real datasets, and experimental results show that our FEM-CVR can effectively control attribute effect in nonlinear regression model on large scale biased dataset with good generalization ability, whose upper bound of the time complexity is independent of the size of the dataset, only related to the approximate parameter of the minimum enclosing ball ε.
  • 期刊类型引用(10)

    1. 吴江,段一奇. 金融评论文本情感分析研究趋势与未来展望. 信息资源管理学报. 2025(01): 86-101 . 百度学术
    2. 葛业波,刘文杰,顾雨晨. 融合情感分析和GAN-TrellisNet的股价预测方法. 计算机工程与应用. 2024(12): 314-324 . 百度学术
    3. 高霞. 基于机器学习算法的金融市场趋势预测研究. 微型电脑应用. 2023(02): 30-32+40 . 百度学术
    4. 李庆涛,林培光,王基厚,周佳倩,张燕,蹇木伟. 基于板块效应的深度学习股价走势预测方法. 南京师范大学学报(工程技术版). 2022(01): 30-38 . 百度学术
    5. 刘月娟,王武. 基于多特征融合的股票走势预测研究. 云南民族大学学报(自然科学版). 2022(02): 227-234 . 百度学术
    6. 马朋飞,史树斌,张小领. 移动式无线充电的无线传感器网络的数据收集分析. 数字技术与应用. 2022(08): 61-63 . 百度学术
    7. 周佳倩,林培光,李庆涛,王基厚,刘利达. MDDE:一种基于投资组合的金融市场趋势分析方法. 南京大学学报(自然科学). 2022(05): 876-883 . 百度学术
    8. 姚远,张朝阳. 基于HP-LSTM模型的股指价格预测方法. 计算机工程与应用. 2021(24): 296-304 . 百度学术
    9. 王基厚,林培光,周佳倩,李庆涛,张燕,蹇木伟. 结合公司财务报表数据的股票指数预测方法. 计算机应用. 2021(12): 3632-3636 . 百度学术
    10. 辛强伟,唐云凯. 多维度数据组合的人工智能系统性能优化分析. 数字技术与应用. 2020(10): 36-38 . 百度学术

    其他类型引用(41)

计量
  • 文章访问数:  1001
  • HTML全文浏览量:  3
  • PDF下载量:  673
  • 被引次数: 51
出版历程
  • 发布日期:  2017-08-31

目录

    /

    返回文章
    返回