• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

传感器网络中语义事件区域查询处理

李英龙, 朱艺华, 吕明琪

李英龙, 朱艺华, 吕明琪. 传感器网络中语义事件区域查询处理[J]. 计算机研究与发展, 2017, 54(5): 986-997. DOI: 10.7544/issn1000-1239.2017.20160629
引用本文: 李英龙, 朱艺华, 吕明琪. 传感器网络中语义事件区域查询处理[J]. 计算机研究与发展, 2017, 54(5): 986-997. DOI: 10.7544/issn1000-1239.2017.20160629
Li Yinglong, Zhu Yihua, Lü Mingqi. Semantic Event Region Query Processing in Sensor Networks[J]. Journal of Computer Research and Development, 2017, 54(5): 986-997. DOI: 10.7544/issn1000-1239.2017.20160629
Citation: Li Yinglong, Zhu Yihua, Lü Mingqi. Semantic Event Region Query Processing in Sensor Networks[J]. Journal of Computer Research and Development, 2017, 54(5): 986-997. DOI: 10.7544/issn1000-1239.2017.20160629
李英龙, 朱艺华, 吕明琪. 传感器网络中语义事件区域查询处理[J]. 计算机研究与发展, 2017, 54(5): 986-997. CSTR: 32373.14.issn1000-1239.2017.20160629
引用本文: 李英龙, 朱艺华, 吕明琪. 传感器网络中语义事件区域查询处理[J]. 计算机研究与发展, 2017, 54(5): 986-997. CSTR: 32373.14.issn1000-1239.2017.20160629
Li Yinglong, Zhu Yihua, Lü Mingqi. Semantic Event Region Query Processing in Sensor Networks[J]. Journal of Computer Research and Development, 2017, 54(5): 986-997. CSTR: 32373.14.issn1000-1239.2017.20160629
Citation: Li Yinglong, Zhu Yihua, Lü Mingqi. Semantic Event Region Query Processing in Sensor Networks[J]. Journal of Computer Research and Development, 2017, 54(5): 986-997. CSTR: 32373.14.issn1000-1239.2017.20160629

传感器网络中语义事件区域查询处理

基金项目: 国家自然科学基金项目(61502421,61432015);浙江省自然科学基金项目(LY15F020026,LY15F020025)
详细信息
  • 中图分类号: TP391; TP393

Semantic Event Region Query Processing in Sensor Networks

  • 摘要: 传感器网络可以看成是一个资源受限的无线分布式数据库系统,如何设计低功耗高可靠的数据处理方法,从分布式的感知数据中获取用户感兴趣的信息是一个挑战性工作.现有的事件(区域)检测方法大都基于原始的感知数据,处理大规模的原始感知数据的通信和时间开销很大,然而这些原始数据由于本身的不精确性和不确定性,难以保证得到精确的处理结果.大多数情况,用户并不关心这些原始感知数据或者网内过滤/融合时的数据形态,而是想得到类似自然语言的“有多严重?” 、“可信吗?”等语义事件信息.此外,现有的事件区域检测方法主要是利用邻居协作来提高检测的准确性,而邻居协作需要大规模的网内数据交换,非常耗时耗能.鉴于上述问题,提出一种新的基于模糊方法的语义事件区域查询处理方法,语义事件信息代替原始的感知数据用于网内过滤和融合,并设计了基于模糊方法的分布式语义事件信息表示、过滤和融合算法.基于真实数据集的仿真实验表明了该方法在兼顾节能和可靠性方面有良好的表现.
    Abstract: Sensor networks can be viewed as resources constrained distributed database systems, of which a significant challenge is to develop reliable, energy-efficient methods to extract useful information from distributed sensor data. Most of the existing event (region) detection approaches rely on using raw sensory data, which results in a large amount of data transmission as well as is time-consuming. However, it is difficult to ensure accurate results due to the imprecision and uncertainty of the raw sensor data. In many cases, users neither care about these raw sensory data nor pay attention to the data format during in-network filtering or fusion, but want to get natural language-like semantic event information, such as “how serious it is”, “is it credible?” Moreover, the main technique of the existing event detection is neighboring cooperation, which requires great data exchange between neighboring nodes. It is costly in terms of energy and time. This paper proposes a novel fuzzy methodology based semantic event region query processing approach. Semantic event information instead of raw sensor data is used for in-network fusion, and fuzzy method based distributed semantic event information description, filtering and fusion approaches are devised. The experimental evaluation based on real data set show that the proposed approach has good performance in terms of energy efficiency and reliability.
  • 期刊类型引用(21)

    1. 李禹纬,付锐,刘帆. 改进YOLOv7的轻量化交通标志检测算法. 太原理工大学学报. 2024(01): 195-203 . 百度学术
    2. 李旭东 ,廖婷婷 ,乐文毅 ,曾小信 ,陈思墨 ,李宗平 . 基于YOLOv3的袋式除尘器滤袋破损自动检测方法. 烧结球团. 2024(01): 99-105 . 百度学术
    3. 江金懋,钟国韵. 基于双向嵌套级联残差的交通标志检测方法. 现代电子技术. 2024(05): 176-181 . 百度学术
    4. 韩长江,刘丽娟. 基于Transformer改进YOLOv5的交通标志检测算法. 信息技术. 2024(11): 21-27 . 百度学术
    5. 张京淇,李超,李晓磊. 基于改进YOLOv8s的交通标志检测算法. 电脑知识与技术. 2024(30): 31-34 . 百度学术
    6. 胡昭华,王莹. 改进YOLOv5的交通标志检测算法. 计算机工程与应用. 2023(01): 82-91 . 百度学术
    7. 金晓康,吴瑶,施莹娟,沈才有. 基于YOLO框架的实时交通标志识别算法研究与系统实现. 软件. 2023(01): 20-23 . 百度学术
    8. 刘翀豪,潘理虎,杨帆,张睿. 改进YOLOv5的轻量化口罩检测算法. 计算机工程与应用. 2023(07): 232-241 . 百度学术
    9. 王能文,张涛. 改进YOLOX-S实时多尺度交通标志检测算法. 计算机工程与应用. 2023(21): 167-175 . 百度学术
    10. 方猛,邹亚洲. 基于车载点云数据的道路交通指示标志检测方法. 北京测绘. 2023(08): 1121-1127 . 百度学术
    11. 王浩,雷印杰,陈浩楠. 改进YOLOV3实时交通标志检测算法. 计算机工程与应用. 2022(08): 243-248 . 百度学术
    12. 刘万军,李嘉欣,曲海成. 基于多尺度卷积神经网络的交通标示识别研究. 计算机应用研究. 2022(05): 1557-1562 . 百度学术
    13. 张上,王恒涛,冉秀康. 基于YOLOv5的轻量化交通标志检测方法. 电子测量技术. 2022(08): 129-135 . 百度学术
    14. 刘宇宸,石刚,崔青,刘明辉,郑秋萍. 改进MobileNetv3-YOLOv3交通标志牌检测算法. 东北师大学报(自然科学版). 2022(02): 53-60 . 百度学术
    15. 高宇鹏,梁世军. 交通禁令标志自动图像识别方法设计与仿真. 计算机仿真. 2022(06): 123-126+145 . 百度学术
    16. 闵锋,侯泽铭. 铁路接触网主要部件检测方法. 计算机工程与设计. 2022(10): 2911-2917 . 百度学术
    17. 马宇,张丽果,杜慧敏,毛智礼. 卷积神经网络的交通标志语义分割. 计算机科学与探索. 2021(06): 1114-1121 . 百度学术
    18. 马永杰,程时升,马芸婷,马义德. 卷积神经网络及其在智能交通系统中的应用综述. 交通运输工程学报. 2021(04): 48-71 . 百度学术
    19. 张力天,孔嘉漪,樊一航,范灵俊,包尔固德. 基于宏微观因素的概率级别的车辆事故预测. 计算机研究与发展. 2021(09): 2052-2061 . 本站查看
    20. 陈燕,杨志刚. 自然场景建筑工程标志信息逐级细化识别算法. 计算机仿真. 2021(08): 450-454 . 百度学术
    21. 任坤,黄泷,范春奇,高学金. 基于多尺度像素特征融合的实时小交通标志检测算法. 信号处理. 2020(09): 1457-1463 . 百度学术

    其他类型引用(33)

计量
  • 文章访问数:  1065
  • HTML全文浏览量:  2
  • PDF下载量:  621
  • 被引次数: 54
出版历程
  • 发布日期:  2017-04-30

目录

    /

    返回文章
    返回