• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于多属性决策的机会传感器网络关键节点预测

刘琳岚, 张江, 舒坚, 郭凯, 孟令冲

刘琳岚, 张江, 舒坚, 郭凯, 孟令冲. 基于多属性决策的机会传感器网络关键节点预测[J]. 计算机研究与发展, 2017, 54(9): 2021-2031. DOI: 10.7544/issn1000-1239.2017.20160645
引用本文: 刘琳岚, 张江, 舒坚, 郭凯, 孟令冲. 基于多属性决策的机会传感器网络关键节点预测[J]. 计算机研究与发展, 2017, 54(9): 2021-2031. DOI: 10.7544/issn1000-1239.2017.20160645
Liu Linlan, Zhang Jiang, Shu Jian, Guo Kai, Meng Lingchong. Multiple Attribute Decision Making-Based Prediction Approach of Critical Node for Opportunistic Sensor Networks[J]. Journal of Computer Research and Development, 2017, 54(9): 2021-2031. DOI: 10.7544/issn1000-1239.2017.20160645
Citation: Liu Linlan, Zhang Jiang, Shu Jian, Guo Kai, Meng Lingchong. Multiple Attribute Decision Making-Based Prediction Approach of Critical Node for Opportunistic Sensor Networks[J]. Journal of Computer Research and Development, 2017, 54(9): 2021-2031. DOI: 10.7544/issn1000-1239.2017.20160645
刘琳岚, 张江, 舒坚, 郭凯, 孟令冲. 基于多属性决策的机会传感器网络关键节点预测[J]. 计算机研究与发展, 2017, 54(9): 2021-2031. CSTR: 32373.14.issn1000-1239.2017.20160645
引用本文: 刘琳岚, 张江, 舒坚, 郭凯, 孟令冲. 基于多属性决策的机会传感器网络关键节点预测[J]. 计算机研究与发展, 2017, 54(9): 2021-2031. CSTR: 32373.14.issn1000-1239.2017.20160645
Liu Linlan, Zhang Jiang, Shu Jian, Guo Kai, Meng Lingchong. Multiple Attribute Decision Making-Based Prediction Approach of Critical Node for Opportunistic Sensor Networks[J]. Journal of Computer Research and Development, 2017, 54(9): 2021-2031. CSTR: 32373.14.issn1000-1239.2017.20160645
Citation: Liu Linlan, Zhang Jiang, Shu Jian, Guo Kai, Meng Lingchong. Multiple Attribute Decision Making-Based Prediction Approach of Critical Node for Opportunistic Sensor Networks[J]. Journal of Computer Research and Development, 2017, 54(9): 2021-2031. CSTR: 32373.14.issn1000-1239.2017.20160645

基于多属性决策的机会传感器网络关键节点预测

基金项目: 国家自然科学基金项目(61363015,61262020,61501217,61501218);江西省自然科学基金重点项目(20171ACB20018,20171BAB202009,20071BBH80022);江西省教育厅科学技术重点项目(GJJ150702); 江西省研究生创新专项资金项目(YC2015-S324,YC2016-042)
详细信息
  • 中图分类号: TP393

Multiple Attribute Decision Making-Based Prediction Approach of Critical Node for Opportunistic Sensor Networks

  • 摘要: 提前获知或预测网络的关键节点,便可根据关键节点的相关信息对网络进行优化,当网络瘫痪时,可第一时间排查关键节点,减少网络维护时间和成本.现有静态无线传感器网络关键节点预测方法,不适用于机会传感器网络(opportunistic sensor networks, OSNs).针对机会传感器网络结构动态变化、消息传输时延高的特点,分析多区域机会传感器网络分层结构的消息传输过程,定义阶段贡献度反映Ferry节点在消息传输过程中的贡献程度,定义区域贡献度反映Ferry节点对区域的贡献程度.在此基础上,以Ferry节点在网络中的综合贡献度作为判断关键节点的依据,提出基于多属性决策中理想点法(technique for order preference by similarity to ideal solution, TOPSIS)的关键节点预测方法.实验结果表明:采用改进TOPSIS算法能够获得更高的预测精度;搭建了实验床以进一步验证提出的预测方法,结果表明,采用改进TOPSIS算法的预测精度更高.
    Abstract: If critical nodes have been predicted, the network can be optimized according to the information of the critical nodes. Furthermore, maintenance time and cost of network can be dramatically reduced by checking the critical nodes at the first time when the network is crashed. Unfortunately, the existing methods of predicting critical nodes in static wireless sensor networks are not suitable for opportunistic sensor networks (OSNs). According to the characteristics of dynamic changes of network topology and high latency, for multi-region OSNs (MOSNs) with hierarchical structure, this paper analyzes the message transferring process. The stage contribution is defined to reflect the contribution of Ferry nodes in the process of message transmission, and the region contribution is defined to reflect the contribution of Ferry nodes to regions. In terms of the comprehensive contribution of Ferry nodes, the prediction method of critical nodes is proposed, which is based on multiple attribute decision making—technique for order preference by similarity to ideal solution (TOPSIS). The experimental results show that the prediction method with improved TOPSIS algorithms achieves better accuracy. Furthermore, test bed is established so as to validate the proposed method. The test bed experimental results show that the prediction method with improved TOPSIS algorithms achieves better accuracy as well.
  • 期刊类型引用(12)

    1. 刘强,朱金森,赵龙龙,沙宇晨,刘尚东,季一木. 基于字句动态特征和自注意力的情感分析方法. 数据采集与处理. 2024(01): 193-203 . 百度学术
    2. 韩虎,孟甜甜. 面向语法加权图文本的方面情感三元组抽取. 北京航空航天大学学报. 2024(02): 409-418 . 百度学术
    3. 郭磊,贾真,李天瑞. 面向方面级情感分析的交互式关系图注意力网络. 计算机应用. 2024(03): 696-701 . 百度学术
    4. 杨锐,刘永坚,解庆,刘平峰. 基于Graph-LSTMs的双重位置感知方面级情感分类. 计算机应用与软件. 2024(04): 165-172 . 百度学术
    5. 刘辉,马祥,张琳玉,何如瑾. 融合匹配长短时记忆网络和语法距离的方面级情感分析模型. 计算机应用. 2023(01): 45-50 . 百度学术
    6. 代祖华,刘园园,狄世龙. 语义增强的图神经网络方面级文本情感分析. 计算机工程. 2023(06): 71-80 . 百度学术
    7. 孟甜甜,韩虎,吴渊航. 面向方面抽取与情感分类的多任务联合建模. 计算机科学与探索. 2023(07): 1669-1679 . 百度学术
    8. 程帆,王芳,黄树成. 基于混合编码与双通道GCN的方面级情感分析. 软件导刊. 2023(07): 15-20 . 百度学术
    9. 孙天伟,杨长春,顾晓清,谈国胜. 结合共现网络的方面级情感分析研究. 计算机工程与应用. 2023(20): 111-118 . 百度学术
    10. 张文钧,蒋良孝,张欢,陈龙. 一种双层贝叶斯模型:随机森林朴素贝叶斯. 计算机研究与发展. 2021(09): 2040-2051 . 本站查看
    11. 韩虎,吴渊航,秦晓雅. 面向方面级情感分析的交互图注意力网络模型. 电子与信息学报. 2021(11): 3282-3290 . 百度学术
    12. 巫浩盛,缪裕青,张万桢,周明,文益民. 基于距离与图卷积网络的方面级情感分析. 计算机应用研究. 2021(11): 3274-3278+3321 . 百度学术

    其他类型引用(33)

计量
  • 文章访问数:  1072
  • HTML全文浏览量:  1
  • PDF下载量:  761
  • 被引次数: 45
出版历程
  • 发布日期:  2017-08-31

目录

    /

    返回文章
    返回