• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于多属性决策的机会传感器网络关键节点预测

刘琳岚, 张江, 舒坚, 郭凯, 孟令冲

刘琳岚, 张江, 舒坚, 郭凯, 孟令冲. 基于多属性决策的机会传感器网络关键节点预测[J]. 计算机研究与发展, 2017, 54(9): 2021-2031. DOI: 10.7544/issn1000-1239.2017.20160645
引用本文: 刘琳岚, 张江, 舒坚, 郭凯, 孟令冲. 基于多属性决策的机会传感器网络关键节点预测[J]. 计算机研究与发展, 2017, 54(9): 2021-2031. DOI: 10.7544/issn1000-1239.2017.20160645
Liu Linlan, Zhang Jiang, Shu Jian, Guo Kai, Meng Lingchong. Multiple Attribute Decision Making-Based Prediction Approach of Critical Node for Opportunistic Sensor Networks[J]. Journal of Computer Research and Development, 2017, 54(9): 2021-2031. DOI: 10.7544/issn1000-1239.2017.20160645
Citation: Liu Linlan, Zhang Jiang, Shu Jian, Guo Kai, Meng Lingchong. Multiple Attribute Decision Making-Based Prediction Approach of Critical Node for Opportunistic Sensor Networks[J]. Journal of Computer Research and Development, 2017, 54(9): 2021-2031. DOI: 10.7544/issn1000-1239.2017.20160645
刘琳岚, 张江, 舒坚, 郭凯, 孟令冲. 基于多属性决策的机会传感器网络关键节点预测[J]. 计算机研究与发展, 2017, 54(9): 2021-2031. CSTR: 32373.14.issn1000-1239.2017.20160645
引用本文: 刘琳岚, 张江, 舒坚, 郭凯, 孟令冲. 基于多属性决策的机会传感器网络关键节点预测[J]. 计算机研究与发展, 2017, 54(9): 2021-2031. CSTR: 32373.14.issn1000-1239.2017.20160645
Liu Linlan, Zhang Jiang, Shu Jian, Guo Kai, Meng Lingchong. Multiple Attribute Decision Making-Based Prediction Approach of Critical Node for Opportunistic Sensor Networks[J]. Journal of Computer Research and Development, 2017, 54(9): 2021-2031. CSTR: 32373.14.issn1000-1239.2017.20160645
Citation: Liu Linlan, Zhang Jiang, Shu Jian, Guo Kai, Meng Lingchong. Multiple Attribute Decision Making-Based Prediction Approach of Critical Node for Opportunistic Sensor Networks[J]. Journal of Computer Research and Development, 2017, 54(9): 2021-2031. CSTR: 32373.14.issn1000-1239.2017.20160645

基于多属性决策的机会传感器网络关键节点预测

基金项目: 国家自然科学基金项目(61363015,61262020,61501217,61501218);江西省自然科学基金重点项目(20171ACB20018,20171BAB202009,20071BBH80022);江西省教育厅科学技术重点项目(GJJ150702); 江西省研究生创新专项资金项目(YC2015-S324,YC2016-042)
详细信息
  • 中图分类号: TP393

Multiple Attribute Decision Making-Based Prediction Approach of Critical Node for Opportunistic Sensor Networks

  • 摘要: 提前获知或预测网络的关键节点,便可根据关键节点的相关信息对网络进行优化,当网络瘫痪时,可第一时间排查关键节点,减少网络维护时间和成本.现有静态无线传感器网络关键节点预测方法,不适用于机会传感器网络(opportunistic sensor networks, OSNs).针对机会传感器网络结构动态变化、消息传输时延高的特点,分析多区域机会传感器网络分层结构的消息传输过程,定义阶段贡献度反映Ferry节点在消息传输过程中的贡献程度,定义区域贡献度反映Ferry节点对区域的贡献程度.在此基础上,以Ferry节点在网络中的综合贡献度作为判断关键节点的依据,提出基于多属性决策中理想点法(technique for order preference by similarity to ideal solution, TOPSIS)的关键节点预测方法.实验结果表明:采用改进TOPSIS算法能够获得更高的预测精度;搭建了实验床以进一步验证提出的预测方法,结果表明,采用改进TOPSIS算法的预测精度更高.
    Abstract: If critical nodes have been predicted, the network can be optimized according to the information of the critical nodes. Furthermore, maintenance time and cost of network can be dramatically reduced by checking the critical nodes at the first time when the network is crashed. Unfortunately, the existing methods of predicting critical nodes in static wireless sensor networks are not suitable for opportunistic sensor networks (OSNs). According to the characteristics of dynamic changes of network topology and high latency, for multi-region OSNs (MOSNs) with hierarchical structure, this paper analyzes the message transferring process. The stage contribution is defined to reflect the contribution of Ferry nodes in the process of message transmission, and the region contribution is defined to reflect the contribution of Ferry nodes to regions. In terms of the comprehensive contribution of Ferry nodes, the prediction method of critical nodes is proposed, which is based on multiple attribute decision making—technique for order preference by similarity to ideal solution (TOPSIS). The experimental results show that the prediction method with improved TOPSIS algorithms achieves better accuracy. Furthermore, test bed is established so as to validate the proposed method. The test bed experimental results show that the prediction method with improved TOPSIS algorithms achieves better accuracy as well.
  • 期刊类型引用(7)

    1. 黄玲,黄镇伟,黄梓源,关灿荣,高月芳,王昌栋. 图卷积宽度跨域推荐系统. 计算机研究与发展. 2024(07): 1713-1729 . 本站查看
    2. 杨玲玲. 基于HM与LWR算法的电子设备MCS推荐优化. 山西电子技术. 2024(04): 22-24 . 百度学术
    3. 郑升旻,付晓东. 利用混合Plackett-Luce模型的不完整序数偏好预测. 计算机应用. 2024(10): 3105-3113 . 百度学术
    4. 杜兆芳. 基于协同排序学习算法的移动群智感知任务推荐. 电子产品世界. 2023(09): 64-66+70 . 百度学术
    5. 朱丽丽. 随机森林算法下列表级排序学习推荐系统设计. 淮阴工学院学报. 2023(05): 62-68 . 百度学术
    6. 曹玉红,赵乙,陈佳桦. 兼容异构数据的稳定评估模型. 小型微型计算机系统. 2021(09): 2011-2016 . 百度学术
    7. 林子楠,刘杜钢,潘微科,明仲. 面向推荐系统中有偏和无偏一元反馈建模的三任务变分自编码器. 信息安全学报. 2021(05): 110-127 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  1072
  • HTML全文浏览量:  1
  • PDF下载量:  761
  • 被引次数: 11
出版历程
  • 发布日期:  2017-08-31

目录

    /

    返回文章
    返回