• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

大数据存储中数据完整性验证结果的检测算法

徐光伟, 白艳珂, 燕彩蓉, 杨延彬, 黄永锋

徐光伟, 白艳珂, 燕彩蓉, 杨延彬, 黄永锋. 大数据存储中数据完整性验证结果的检测算法[J]. 计算机研究与发展, 2017, 54(11): 2487-2496. DOI: 10.7544/issn1000-1239.2017.20160825
引用本文: 徐光伟, 白艳珂, 燕彩蓉, 杨延彬, 黄永锋. 大数据存储中数据完整性验证结果的检测算法[J]. 计算机研究与发展, 2017, 54(11): 2487-2496. DOI: 10.7544/issn1000-1239.2017.20160825
Xu Guangwei, Bai Yanke, Yan Cairong, Yang Yanbin, Huang Yongfeng. Check Algorithm of Data Integrity Verification Results in Big Data Storage[J]. Journal of Computer Research and Development, 2017, 54(11): 2487-2496. DOI: 10.7544/issn1000-1239.2017.20160825
Citation: Xu Guangwei, Bai Yanke, Yan Cairong, Yang Yanbin, Huang Yongfeng. Check Algorithm of Data Integrity Verification Results in Big Data Storage[J]. Journal of Computer Research and Development, 2017, 54(11): 2487-2496. DOI: 10.7544/issn1000-1239.2017.20160825
徐光伟, 白艳珂, 燕彩蓉, 杨延彬, 黄永锋. 大数据存储中数据完整性验证结果的检测算法[J]. 计算机研究与发展, 2017, 54(11): 2487-2496. CSTR: 32373.14.issn1000-1239.2017.20160825
引用本文: 徐光伟, 白艳珂, 燕彩蓉, 杨延彬, 黄永锋. 大数据存储中数据完整性验证结果的检测算法[J]. 计算机研究与发展, 2017, 54(11): 2487-2496. CSTR: 32373.14.issn1000-1239.2017.20160825
Xu Guangwei, Bai Yanke, Yan Cairong, Yang Yanbin, Huang Yongfeng. Check Algorithm of Data Integrity Verification Results in Big Data Storage[J]. Journal of Computer Research and Development, 2017, 54(11): 2487-2496. CSTR: 32373.14.issn1000-1239.2017.20160825
Citation: Xu Guangwei, Bai Yanke, Yan Cairong, Yang Yanbin, Huang Yongfeng. Check Algorithm of Data Integrity Verification Results in Big Data Storage[J]. Journal of Computer Research and Development, 2017, 54(11): 2487-2496. CSTR: 32373.14.issn1000-1239.2017.20160825

大数据存储中数据完整性验证结果的检测算法

基金项目: 上海自然科学基金项目(15ZR1400900,15ZR1400300,16ZR1401100);上海市教育科研项目(C160076);国家自然科学基金项目(61402100,61772128);同济大学高密度人居环境生态与节能教育部重点实验室种子基金项目;东华大学中央高校基本科研业务费专项资金项目(2232015D3-29)
详细信息
  • 中图分类号: TP391

Check Algorithm of Data Integrity Verification Results in Big Data Storage

  • 摘要: 云存储作为云计算中最为广泛的应用之一,给用户带来了便利的接入和共享数据的同时,也产生了数据损坏和丢失等方面的数据完整性问题.现有的远程数据完整性验证中都是由可信任的第三方来公开执行数据完整性验证,这使得验证者有提供虚假伪造的验证结果的潜在威胁,从而使得数据完整性验证结果不可靠,尤其是当他与云存储提供者合谋时情况会更糟.提出一种数据验证结果的检测算法以抵御来自不可信验证结果的伪造欺骗攻击,算法中通过建立完整性验证证据和不可信检测证据的双证据模式来执行交叉验证,通过完整性验证证据来检测数据的完整性,利用不可信检测证据判定数据验证结果的正确性,此外,构建检测树来确保验证结果的可靠性.理论分析和模拟结果表明:该算法通过改善有效的验证结果来保证验证结果的可靠性和提高验证效率.
    Abstract: Cloud storage is one of the most widely used applications in cloud computing. It makes it convenient for users to access and share the data yet producing data integrity issues such as data corruption and loss. The existing remote data verification algorithms are based on the trusted third party who works as a public verifier to verify the outsourced data integrity. In this case, the verifier has a potential threat to provide false verification results, which cannot ensure the reliability of data verification. Especially, the situation can be even worse while the verifier is in collusion with the cloud storage providers. In this paper, we propose a check algorithm of incredible verification results in data integrity verification (CIVR) to resist the attacks of forgery and deception in incredible verification results. We utilize double verification proofs, i.e., integrity verification proof and incredible check proof, to execute the cross check. The integrity verification proof is to verify whether the data are intact. The incredible check proof is to check whether the verification results are correct. Moreover, the algorithm constructs the check tree to ensure the reliability of verification results. Theoretical analysis and simulation results show that the proposed algorithm can guarantee the reliability of verification results and increase the efficiency by improving the valid verification.
  • 期刊类型引用(5)

    1. 程宁,戴远泉. 基于核协方差矩阵的无监督数据聚类. 计算机应用与软件. 2023(05): 288-296 . 百度学术
    2. 刘旸,吴安波,李慧斌. LBSN中利用深度学习的POI推荐方法. 计算机工程与设计. 2022(10): 2926-2934 . 百度学术
    3. 谢林基,赵铁柱,柳毅. 兴趣点推荐研究综述. 计算机应用与软件. 2022(12): 1-12+57 . 百度学术
    4. 魏宁,袁方,刘宇. 面向本地和外地用户情感分析推荐模型. 河北大学学报(自然科学版). 2021(04): 419-425 . 百度学术
    5. 李丹霞. 基于位置的社交网络潜在好友推荐系统研究. 计算机产品与流通. 2020(06): 98+105 . 百度学术

    其他类型引用(13)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 18
出版历程
  • 发布日期:  2017-10-31

目录

    /

    返回文章
    返回