• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于距离中心化与投影向量学习的行人重识别

丁宗元, 王洪元, 陈付华, 倪彤光

丁宗元, 王洪元, 陈付华, 倪彤光. 基于距离中心化与投影向量学习的行人重识别[J]. 计算机研究与发展, 2017, 54(8): 1785-1794. DOI: 10.7544/issn1000-1239.2017.20170014
引用本文: 丁宗元, 王洪元, 陈付华, 倪彤光. 基于距离中心化与投影向量学习的行人重识别[J]. 计算机研究与发展, 2017, 54(8): 1785-1794. DOI: 10.7544/issn1000-1239.2017.20170014
Ding Zongyuan, Wang Hongyuan, Chen Fuhua, Ni Tongguang. Person Re-Identification Based on Distance Centralization and Projection Vectors Learning[J]. Journal of Computer Research and Development, 2017, 54(8): 1785-1794. DOI: 10.7544/issn1000-1239.2017.20170014
Citation: Ding Zongyuan, Wang Hongyuan, Chen Fuhua, Ni Tongguang. Person Re-Identification Based on Distance Centralization and Projection Vectors Learning[J]. Journal of Computer Research and Development, 2017, 54(8): 1785-1794. DOI: 10.7544/issn1000-1239.2017.20170014

基于距离中心化与投影向量学习的行人重识别

基金项目: 国家自然科学基金项目(61572085,61502058)
详细信息
  • 中图分类号: TP391.41

Person Re-Identification Based on Distance Centralization and Projection Vectors Learning

  • 摘要: 现有的基于投影的行人重识别方法具有训练时间长、投影矩阵维数高、识别率低等问题.此外在建立训练集时,还会出现类内样本数目远少于类间样本数目的情况.针对这些问题,提出了基于距离中心化的相似性度量算法.在构建训练集时,将同一组目标群体特征值中心化,利用中心特征值来构建类间距离,而类内距离保持不变.这样使得类内类间样本数目接近,可以很好地缓解类别不平衡所带来的过拟合风险.另外在学习投影矩阵时,利用训练集更新策略,学习若干组投影向量,使得到的投影向量近似正交,这样既可以有效减少运算复杂度和存储复杂度,又可以使得学习到的投影向量能够通过简单的相乘近似得到原来的投影矩阵.最后,在学习投影向量时采用共轭梯度法,该方法具有二次收敛性,能够快速收敛到目标精度.实验结果表明:提出的算法具有较高的效率,在不同数据集上的识别率都有明显的提升,训练时间也比其他常用的行人重识别算法要短.
    Abstract: Existing projection-based person re-identification methods usually suffer from long time training, high dimension of projection matrix, and low matching rate. In addition, the intra-class samples may be much less than the inter-class samples when a training data set is built. To solve these problems, this paper proposes a distance-centralization based algorithm for similarity metric learning. When a training data set is to be built, the feature values of a same target person are centralized and the inter-class distances are built by these centralized values, while the intra-class distances are still directly built from original samples. As a result, the number of intra-class samples and the number of inter-class samples can be much closer, which reduces the risk of overfitting because of class imbalance. In addition, during learning projection matrix, the resulted projection vectors can be approximately orthogonal by using a strategy of updating training data sets. In this way, the proposed method can significantly reduce both the computational complexity and the storage space. Finally, the conjugate gradient method is used in the projection vector learning. The advantage of this method is its quadratic convergence, which can promote the convergence. Experimental results show that the proposed algorithm has higher efficiency. The matching rate can be significantly improved, and the time of training is much shorter than most of existing algorithms of person re-identification.
  • 期刊类型引用(14)

    1. 孙造诣,许苇婧,徐亮,李宏汀. 调节定向对App用户隐私披露的影响. 心理科学进展. 2023(07): 1160-1171 . 百度学术
    2. 王宏. 基于知识图谱的中外用户隐私研究对比分析. 大学图书情报学刊. 2023(04): 136-145 . 百度学术
    3. 冯晗,伊华伟,李晓会,李锐. 推荐系统的隐私保护研究综述. 计算机科学与探索. 2023(08): 1814-1832 . 百度学术
    4. 李静,赵青杉,高媛. 基于机器学习的大数据隐私非交互式查询研究. 计算机仿真. 2023(08): 334-338 . 百度学术
    5. 刘振,吴宇. 基于区块链的自适应权重趋势感知联邦学习方案. 电子设计工程. 2023(24): 75-80 . 百度学术
    6. 雷可为,王小辉. 基于微信公众平台的景区个性化推荐系统设计. 信息技术. 2022(01): 56-61 . 百度学术
    7. 朱智韬,司世景,王健宗,肖京. 联邦推荐系统综述. 大数据. 2022(04): 105-132 . 百度学术
    8. 张洪磊,李浥东,邬俊,陈乃月,董海荣. 基于隐私保护的联邦推荐算法综述. 自动化学报. 2022(09): 2142-2163 . 百度学术
    9. 胡至洵,杜宇,刘潇月. 基于用户兴趣分类的书籍自动推荐系统设计. 现代电子技术. 2021(06): 58-62 . 百度学术
    10. 马苏杭,龙士工,刘海,彭长根,李思雨. 面向高维数据发布的个性化差分隐私算法. 计算机系统应用. 2021(04): 131-138 . 百度学术
    11. 马黛露丝,朱海萍,田锋,冯沛,陈妍,计湘婷,李玉杰. 一种权衡性能与隐私保护的推荐算法. 西安交通大学学报. 2021(07): 117-123 . 百度学术
    12. 邓翔天,钱海峰. 标准模型下的灵活细粒度授权密文一致性检测方案. 计算机研究与发展. 2021(10): 2222-2237 . 本站查看
    13. 周俊,方国英,吴楠. 联邦学习安全与隐私保护研究综述. 西华大学学报(自然科学版). 2020(04): 9-17 . 百度学术
    14. 周艳榕. 基于个性化特征的电子商务智能推荐系统. 现代电子技术. 2020(19): 155-158+162 . 百度学术

    其他类型引用(25)

计量
  • 文章访问数:  1564
  • HTML全文浏览量:  1
  • PDF下载量:  645
  • 被引次数: 39
出版历程
  • 发布日期:  2017-07-31

目录

    /

    返回文章
    返回