Increasing PCM Lifetime by Using Pipelined Pseudo-Random Encoding Algorithm
-
摘要: 相变存储器(phase change memory, PCM)是一种颇具前景的新型存储器件,具有非易失性、静态功耗低和存储密度高的优点.然而,该类器件的低写入寿命是其在实用化中亟待克服的关键问题之一.一般来说,通过每次写入时仅写入相异位的策略,可以减少产生的平均写入量,从而延长PCM的写入寿命.然而,应用这一差异式的写入策略通常又会以降低读写速度为代价.为此,提出了一种兼具高效和快速特点的写入量减少方法FEBRE(a fast and efficient bit-flipping reduction technique to extend PCM lifetime).该方法在差分写入阶段前,设计并使用了一种快速的一对多映射,将待写入的数据并行映射为多个编码向量,从而增加了从其中找到一个与已有数据最近的向量的可能性.此外,还提出了一种流水化的伪随机编码算法,用以加速一对多映射中的编码过程,从而降低写入开销.实验表明,与目前领先的PRES(pseudo-random encoding scheme)方法相比,FEBRE方法在写入操作中,平均减少了5%以上的写入量,提升了2倍以上的编码速度;在读取操作中,减少了45%以上的解码操作次数.Abstract: Phase change memory (PCM) is a promising technique due to its low static power, non-volatility, and density potential. However, the low endurance remains as the key problem to be solved before it can be widely used in practice. Generally, minimizing modified bits in write operation by writing the different bits, is an effective method to extend the lifetime of PCM. But it’s still challenging to reach the minimum without causing significant slowdown of read/write operations. To this end, we propose FEBRE: A fast and efficient bit-flipping reduction technique to extend PCM lifetime. The key idea of our method is to design and use a novel one-to-many parallel mapping before differential write stage. Specifically, FEBRE employs a new data encoding method to generate multiple highly random distributed encoded vectors from one writing data item, which thus increases the possibility of identifying the nearest one to stored data in those vectors. The other contribution of our technique is a pipelined pseudo-random encoding algorithm (PPREA). The new algorithm reduces writing overhead because it is able to accelerate the procedure of the one-to-many mapping. The experiment shows that our technique, compared with PRES, can reduce bit flips by 5.31% on average, and improve the encodingdecoding speed by 2.29x and 45%, respectively.
-
-
期刊类型引用(27)
1. 顾敏,徐雅男,王辛迪,花敏,周雯. 多用户MIMO-MEC网络中基于APSO的任务卸载研究. 无线电工程. 2024(03): 711-718 . 百度学术
2. 王斐然,郭昕阳,张峰. 基于边缘计算的输电线路巡检设备协同调配研究. 自动化仪表. 2024(05): 123-126 . 百度学术
3. 史晓蒙,吕晓鹏,魏健康,王凌. 基于算法组合的端边云任务处理方法. 价值工程. 2024(36): 108-112 . 百度学术
4. 向朝参,程文辉,张昭,焦贤龙,屈毓锛,陈超,戴海鹏. 基于边缘智能计算的城市交通感知数据自适应恢复. 计算机研究与发展. 2023(03): 619-634 . 本站查看
5. 邵梁,何星舟,尚俊娜. 边缘计算中利用改进型遗传算法的任务卸载策略. 计算机应用与软件. 2023(11): 48-57 . 百度学术
6. 高仕斌,刘帝洋,韦晓广,康高强,罗嘉明,雷杰宇. 基于数字孪生网络的牵引供电智能运维体系与应用架构. 铁道学报. 2023(12): 1-15 . 百度学术
7. 张彦虎,鄢丽娟,马志愤,张彦军. 一种适用于多任务多资源移动边缘计算环境下的改进粒子群算力卸载算法. 计算机与现代化. 2022(05): 54-60+67 . 百度学术
8. 刘春林,秦进. 面向5G网络的移动边缘计算节点部署算法设计. 计算机仿真. 2022(12): 436-439+473 . 百度学术
9. 张开强,蒋从锋,程小兰,贾刚勇,张纪林,万健. 多分辨率下资源感知的图像目标自适应缩放检测. 计算机科学. 2021(04): 180-186 . 百度学术
10. 乐光学,陈光鲁,卢敏,杨晓慧,刘建华,黄淳岚,杨忠明. 一种基于K-shell影响力最大化的路径择优计算迁移算法. 计算机研究与发展. 2021(09): 2025-2039 . 本站查看
11. 苏命峰,王国军,李仁发. 边云协同计算中基于预测的资源部署与任务调度优化. 计算机研究与发展. 2021(11): 2558-2570 . 本站查看
12. 贾觐,暴占彪. 改进GA的边缘计算任务卸载与资源分配策略. 计算机工程与设计. 2021(11): 3009-3017 . 百度学术
13. 汪小威,林宁,胡玉平. 移动边缘计算中利用BPSO的任务卸载策略. 计算机工程与设计. 2021(12): 3333-3341 . 百度学术
14. 尹高,石远明. 移动边缘网络中深度学习任务卸载方案. 重庆邮电大学学报(自然科学版). 2020(01): 38-46 . 百度学术
15. 丁雪乾,薛建彬. 边缘计算下基于Lyapunov优化的系统资源分配策略. 微电子学与计算机. 2020(02): 63-68 . 百度学术
16. 白昱阳,黄彦浩,陈思远,张俊,李柏青,王飞跃. 云边智能:电力系统运行控制的边缘计算方法及其应用现状与展望. 自动化学报. 2020(03): 397-410 . 百度学术
17. 乐光学,戴亚盛,杨晓慧,刘建华,游真旭,朱友康. 边缘计算可信协同服务策略建模. 计算机研究与发展. 2020(05): 1080-1102 . 本站查看
18. 盛津芳,滕潇雨,李伟民,王斌. 移动边缘计算中基于改进拍卖模型的计算卸载策略. 计算机应用研究. 2020(06): 1688-1692 . 百度学术
19. 胡锦天,王高才,徐晓桐. 移动边缘计算中具有能耗优化的任务迁移策略. 计算机科学. 2020(06): 260-265 . 百度学术
20. 周振宇,陈亚鹏,潘超,赵雄文,张磊,汪中原. 面向智能电力巡检的高可靠低时延移动边缘计算技术. 高电压技术. 2020(06): 1895-1902 . 百度学术
21. 吕洁娜,张家波,张祖凡,甘臣权. 移动边缘计算卸载策略综述. 小型微型计算机系统. 2020(09): 1866-1877 . 百度学术
22. 张伟. 边缘计算的任务迁移机制研究. 软件导刊. 2020(09): 48-53 . 百度学术
23. 路亚. MEC多服务器启发式联合任务卸载和资源分配策略. 计算机应用与软件. 2020(10): 77-84 . 百度学术
24. 方加娟,李凯. 基于边缘云和移动辅助设备的计算卸载优化方案. 计算机应用与软件. 2020(12): 6-12 . 百度学术
25. 危泽华,曾玲玲. 基于Stackelberg博弈论的边缘计算卸载决策方法. 数学的实践与认识. 2019(11): 91-100 . 百度学术
26. 居晓琴. 移动边缘计算的QoE视频缓存方法. 电脑与信息技术. 2019(05): 44-47 . 百度学术
27. 乐光学,戴亚盛,杨晓慧,朱友康,游真旭,刘建生. 边缘计算多约束可信协同任务迁移策略. 电信科学. 2019(11): 36-50 . 百度学术
其他类型引用(65)
计量
- 文章访问数: 1297
- HTML全文浏览量: 3
- PDF下载量: 727
- 被引次数: 92