Interpretable Clustering with Multi-View Generative Model
-
摘要: 针对聚类中的多视角和可解释的问题,提出多视角生成模型的可解释性聚类算法(interpretable clustering with multi-view generative model, ICMG).ICMG能够产生多个视角的聚类划分,并通过视角的语义信息对聚类结果进行定性和定量地解释.首先,构建一种多视角生成模型(multi-view generative model, MGM),该模型使用贝叶斯程序学习(Bayesian program learning, BPL)和嵌入多视角因素的贝叶斯案例模型(multi-view Bayesian case model, MBCM)生成多个视角.其次,基于视角的匹配度进行聚类得到多种聚类方案.最后使用视角的原型和子空间所附带的语义信息定性和定量地解释聚类结果.实验结果表明:ICMG能够得到多种可解释的聚类结果,相比于传统多视角聚类算法具有较明显的优势.Abstract: Clustering has two problems: multi-view and interpretation. In this paper, we propose an interpretable clustering with multi-view generative model (ICMG). ICMG can get multiple clustering based multi-view meanwhile qualitatively and quantitatively interpret clustering results by using semantic information in views. Firstly, we construct a multi-view generative model (MGM). It generates multiple views by using Bayesian program learning (BPL) and multi-view Bayesian case model (MBCM). Then we get multiple clustering by clustering based on views’ matching degree. Finally, ICMG qualitatively and quantitatively interprets clustering results by using semantic information in views’ prototypes and important features. Experimental results show ICMG can get multiple interpretable clustering and the performance of ICMG is superior to traditional multi-view clustering.
-
-
期刊类型引用(7)
1. 史涯晴,许山山,易明煜,简开宇. 基于协议模型的嵌入式软件接口测试数据生成. 陆军工程大学学报. 2024(05): 57-66 . 百度学术
2. 高冬梅,梅新奎,宿文玲,宋笑兵. 金融分布式接口自动化测试工具设计. 智能计算机与应用. 2023(01): 149-152+157 . 百度学术
3. 耿嘉祺,李鑫丽,祝小兰. 支持用例集并行测试的接口测试平台. 计算机系统应用. 2023(06): 91-98 . 百度学术
4. 雷建胜,苏晓,金明磊. 一种分布式可持续集成自动化测试平台. 计算机与现代化. 2020(04): 14-18 . 百度学术
5. 徐京京,马素霞,王海威. 一种面向多监测终端厂家服务的调用方法. 计算机与数字工程. 2020(04): 895-898 . 百度学术
6. 虞砺琨,左万娟,于倩,陈华南,黄晨. 基于数据模型的接口用例自动生成. 测控技术. 2020(07): 24-29 . 百度学术
7. 刘国庆,汪兴轩. 基于Charles录制会话的HTTP接口自动化测试框架设计与实现. 计算机应用与软件. 2019(06): 7-13 . 百度学术
其他类型引用(11)
计量
- 文章访问数: 1594
- HTML全文浏览量: 0
- PDF下载量: 535
- 被引次数: 18