Multi-Scale Deep Learning for Product Image Search
-
摘要: 商品图像检索的目标是检索与图像内容相符的商品,它是移动视觉搜索在电子商务中的重要应用.商品图像检索的发展,既为用户购物提供便利,又促进了电子商务向移动端发展.图像特征是影响商品图片检索性能的重要因素.复杂的图片背景、同类商品之间的相似性和被拍摄商品尺度的变化,都使得商品图像检索对图像特征提出了更高的要求.提出了一种多尺度深度神经网络,以便于抽取对复杂图片背景和目标物体尺度变化更加鲁棒的图像特征.同时根据商品类别标注信息学习图片之间的相似度.针对在线服务对响应速度的要求,通过压缩模型的深度和宽度控制了计算开销.在一个百万级的商品图片数据集上的对比实验证明:该方法在保持速度的同时提升了查询的准确率.Abstract: Product image search is an important application of mobile visual search in e-commerce. The target of product image search is to retrieve the exact product in a query image. The development of product image search not only facilitates people’s shopping, but also results in that e-commerce moves forward to mobile users. As one of the most important performance factors in product image search, image representation suffers from complicated image background, small variance within each product category, and variant scale of the target object. To deal with complicated background and variant object scale, we present a multi-scale deep model for extracting image representation. Meanwhile, we learn image similarity from product category annotations. We also optimize the computation cost by reducing the width and depth of our model to meet the speed requirements of online search services. Experimental results on a million-scale product image dataset shows that our method improves retrieval accuracy while keeps good computation efficiency, comparing with existing methods.
-
Keywords:
- product image search /
- deep learning /
- multi scale /
- metric learning /
- model compression
-
-
期刊类型引用(6)
1. 童伟传,方友军,唐明. 基于数据挖掘的政务数据安全风险检测系统. 信息技术. 2023(02): 151-156 . 百度学术
2. 白荣华,魏强,郭瑞,刘金. 政务信息系统商用密码集约化平台设计与实现. 信息安全研究. 2023(05): 461-468 . 百度学术
3. 黎祥远. 攻防视角下的高校网络安全防护策略——基于网络安全攻防演练的研究. 华商论丛. 2023(01): 101-106 . 百度学术
4. 朱然,曾宇. 基于信任评估模型的物联网节点篡改共识仿真. 计算机仿真. 2021(04): 267-271 . 百度学术
5. 刘平. 国家公共文化云网络安全设计和实践. 百花. 2020(07): 31-34 . 百度学术
6. 张锐昕,王玉荣. 中国政府上网20年:发展历程、成就及反思. 福建师范大学学报(哲学社会科学版). 2019(05): 43-50+168 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 1981
- HTML全文浏览量: 1
- PDF下载量: 1204
- 被引次数: 8