Joint Routing and Scheduling in Cognitive Radio Vehicular Ad Hoc Networks
-
摘要: 通过将认知无线电(cognitive radio, CR)技术应用到车载自组织网络(vehicular ad hoc networks, VANETs)(也称车联网)中,认知无线车载自组织网络(CR-VANETs)可以缓解频谱资源稀缺问题,有效提高车对车通信的频谱资源利用率.由于车辆的高速移动性以及认知无线电频谱资源的动态特性,使得传统的认知无线电网络或车载自组织网络中的路由协议无法直接应用到CR-VANETs中.目前,针对CR-VANETs的路由研究相对较少,如何最大效率地利用有限的频谱资源,同时降低跳数过多带来的频谱资源浪费,仍然是一个有待解决的问题.为此,提出了一种CR-VANETs中联合路由调度方案,结合了有限频谱资源调度研究与最小化路由跳数的优化目标.首先,建立了CR-VANETs中的网络模型和基于车对车通信的频谱感知模型,预测车辆间有效接触时间和频谱可用概率.其次,通过这些参数定义出通信链路消耗,并由此得出权衡链路质量的权重因子.通过分析优化目标,将其转化为有限频谱资源约束下的最小化路由跳数问题,并证明该问题为NP难问题.然后,针对这个联合路由调度问题提出一种混合启发式算法,结合了粒子群优化算法的快速收敛性和遗传算法的种群多样性,对有限频谱资源进行调度,同时优化路由跳数.最后仿真实验结果表明,与现有的CR-VANETs路由研究比较,有着更优的路由跳数并使其保持在一个相对稳定的值.Abstract: Cognitive radio vehicular ad hoc networks (CR-VANETs) have been envisioned to solve the problem of spectrum scarcity and improved spectrum resource efficiency in vehicle-to-vehicle communication by exploiting cognitive radio into the vehicular ad hoc networks. Most existing routing protocols for cognitive radio networks or vehicular ad hoc networks cannot be applied to CR-VANETs directly due to the high-speed mobility of vehicles and dynamically changing availability of cognitive radio channels. At present, the routing research for CR-VANETs is relatively few. How to utilize the spectrum resources effectively and moreover reduce the spectrum band consumption caused by routing hops is still a pending problem. Aspiring to meet these demands and challenges, this paper presents a joint routing and scheduling, which combines the scheduling of spectrum resources and the goal of minimizing routing hops in CR-VANETs. To achieve this goal, we first establish a network model and a CR spectrum model to predict the contact duration between vehicles and the probability of spectrum availability. We define the communication link consumption and the weight of channel according to these parameters. Then we transform the optimization objective into a routing scheme with minimizing hop count, subject to constraint on the scheduling of spectrum resource, and moreover prove this routing scheme is NP-hard. To tackle this issue, a hybrid heuristic algorithm is composed by a particle swarm optimization with fast convergence and a genetic algorithm with population diversity. Simulation results demonstrate that our proposal provides better routing hop counts compared with other CR-VANETs protocols.
-
-
期刊类型引用(19)
1. 包晓丽. 可信数据空间:技术与制度二元共治. 浙江学刊. 2024(01): 89-100+239-240 . 百度学术
2. 林宁,张亮. 基于联邦学习的个性化推荐系统研究. 科技创新与生产力. 2024(04): 27-30 . 百度学术
3. 李璇,邓天鹏,熊金波,金彪,林劼. 基于模型后门的联邦学习水印. 软件学报. 2024(07): 3454-3468 . 百度学术
4. 洪榛,冯王磊,温震宇,吴迪,李涛涛,伍一鸣,王聪,纪守领. 基于梯度回溯的联邦学习搭便车攻击检测. 计算机研究与发展. 2024(09): 2185-2198 . 本站查看
5. 陈卡. 基于模型分割的联邦学习数据隐私保护方法. 电信科学. 2024(09): 136-145 . 百度学术
6. 余晟兴,陈钟. 基于同态加密的高效安全联邦学习聚合框架. 通信学报. 2023(01): 14-28 . 百度学术
7. 林莉,张笑盈,沈薇,王万祥. FastProtector:一种支持梯度隐私保护的高效联邦学习方法. 电子与信息学报. 2023(04): 1356-1365 . 百度学术
8. 顾育豪,白跃彬. 联邦学习模型安全与隐私研究进展. 软件学报. 2023(06): 2833-2864 . 百度学术
9. 郭松岳,王阳谦,柏思远,刘永恒,周骏,王梦鸽,廖清. 面向数据混合分布的联邦自适应交互模型. 计算机研究与发展. 2023(06): 1346-1357 . 本站查看
10. 陈宛桢,张恩,秦磊勇,洪双喜. 边缘计算下基于区块链的隐私保护联邦学习算法. 计算机应用. 2023(07): 2209-2216 . 百度学术
11. 高莹,陈晓峰,张一余,王玮,邓煌昊,段培,陈培炫. 联邦学习系统攻击与防御技术研究综述. 计算机学报. 2023(09): 1781-1805 . 百度学术
12. 张连福,谭作文. 一种面向多模态医疗数据的联邦学习隐私保护方法. 计算机科学. 2023(S2): 933-940 . 百度学术
13. 周赞,张笑燕,杨树杰,李鸿婧,况晓辉,叶何亮,许长桥. 面向联邦算力网络的隐私计算自适激励机制. 计算机学报. 2023(12): 2705-2725 . 百度学术
14. 莫慧凌,郑海峰,高敏,冯心欣. 基于联邦学习的多源异构数据融合算法. 计算机研究与发展. 2022(02): 478-487 . 本站查看
15. 陈前昕,毕仁万,林劼,金彪,熊金波. 支持多数不规则用户的隐私保护联邦学习框架. 网络与信息安全学报. 2022(01): 139-150 . 百度学术
16. 侯坤池,王楠,张可佳,宋蕾,袁琪,苗凤娟. 基于自编码神经网络的半监督联邦学习模型. 计算机应用研究. 2022(04): 1071-1074+1104 . 百度学术
17. 詹玉峰,王家盛,夏元清. 面向联邦学习的数据交易机制. 指挥与控制学报. 2022(02): 122-132 . 百度学术
18. 肖林声,钱慎一. 基于并行同态加密和STC的高效安全联邦学习. 通信技术. 2021(04): 922-928 . 百度学术
19. 刘飚,张方佼,王文鑫,谢康,张健毅. 基于矩阵映射的拜占庭鲁棒联邦学习算法. 计算机研究与发展. 2021(11): 2416-2429 . 本站查看
其他类型引用(45)
计量
- 文章访问数: 1347
- HTML全文浏览量: 0
- PDF下载量: 787
- 被引次数: 64