An Intrusion Detection Scheme Based on Semi-Supervised Learning and Information Gain Ratio
-
摘要: 针对现有未知攻击检测方法仅定性选取特征而导致检测精度较低的问题,提出一种基于半监督学习和信息增益率的入侵检测方案.利用目标网络在遭受攻击时反应在底层重要网络流量特征各异的特点,在模型训练阶段,为了克服训练数据集规模有限的问题,采用半监督学习算法利用少量标记数据获得大规模的训练数据集;在模型检测阶段,引入信息增益率定量分析不同特征对检测性能的影响程度,最大程度地保留了特征信息,以提高模型对未知攻击的检测性能.实验结果表明:该方案能够利用少量标记数据定量分析目标网络中未知攻击的重要网络流量特征并进行检测,其针对不同目标网络中未知攻击检测的准确率均达到90%以上.Abstract: State-of-the-art intrusion detection schemes for unknown attacks employ machine learning techniques to identify anomaly features within network traffic data. However, due to the lack of enough training set, the difficulty of selecting features quantitatively and the dynamic change of unknown attacks, the existing schemes cannot detect unknown attacks effectually. To address this issue, an intrusion detection scheme based on semi-supervised learning and information gain ratio is proposed. In order to overcome the limited problem of training set in the training period, the semi-supervised learning algorithm is used to obtain large-scale training set with a small amount of labelled data. In the detection period, the information gain ratio is introduced to determine the impact of different features and weight voting to infer the final output label to identify unknown attacks adaptively and quantitatively, which can not only retain the information of features at utmost, but also adjust the weight of single decision tree adaptively against dynamic attacks. Extensive experiments indicate that the proposed scheme can quantitatively analyze the important network traffic features of unknown attacks and detect them by using a small amount of labelled data with no less than 91% accuracy and no more than 5% false negative rate, which have obvious advantages over existing schemes.
-
-
期刊类型引用(16)
1. 金兰,陈荆亮. 一种用于异常数据流挖掘的改进Apriori算法研究. 计算机仿真. 2025(01): 480-484 . 百度学术
2. 张文媛,万宇,周选超,吴晓雪,范越鹏. 基于LSTM方法的医疗设备故障预测模型建立. 计量与测试技术. 2025(04): 140-144 . 百度学术
3. 鲁江. 基于模糊聚类的网络敏感数据流动态挖掘. 电子设计工程. 2024(09): 152-155+160 . 百度学术
4. 陈鲜展,沈易成,洪飞扬,石绅. 煤矿掘进工作面瓦斯浓度预测. 工矿自动化. 2024(04): 128-132 . 百度学术
5. 刘淑娟,韩萌,高智慧,穆栋梁,李昂. 数据流上的约束跨层级高效用项集挖掘. 计算机工程与应用. 2024(13): 287-300 . 百度学术
6. 郑浩,王鹰. 嵌入式异构物联网敏感数据流动态挖掘研究. 电子设计工程. 2024(15): 12-15+20 . 百度学术
7. 韩萌,何菲菲,张瑞华,李春鹏,孟凡兴. 生物启发式的模式挖掘方法综述. 计算机工程与应用. 2024(16): 19-33 . 百度学术
8. 欧阳原野. 基于关联规则挖掘算法的集团型企业业务数据管理系统. 电子设计工程. 2024(22): 47-50+57 . 百度学术
9. 肖金桐,温晓楠,李亚娟. 基于最大增益的广域网冗余数据迭代消除仿真. 计算机仿真. 2024(10): 371-375 . 百度学术
10. 单芝慧 ,韩萌 ,韩强 . 基于滑动窗口的数据流高效用模糊项集挖掘. 南京师大学报(自然科学版). 2023(01): 120-129 . 百度学术
11. 戴美玲. 基于改进模糊聚类的网络敏感数据流动态挖掘研究. 保山学院学报. 2023(02): 44-51 . 百度学术
12. 单芝慧,韩萌,韩强. 增量数据上的闭合定量高效用项集挖掘算法. 计算机应用. 2023(07): 2049-2056 . 百度学术
13. 蒋华,李星,王慧娇,韦静海. 基于数据索引结构的跨级高效用项集挖掘算法. 计算机应用. 2023(07): 2200-2208 . 百度学术
14. 单芝慧,韩萌,韩强. 动态数据上的高效用模式挖掘综述. 计算机应用. 2022(01): 94-108 . 百度学术
15. 李慕航,韩萌,陈志强,武红鑫,张喜龙. 基于窗口内投影的闭合高效用模式挖掘. 太原理工大学学报. 2022(02): 257-265 . 百度学术
16. 张妮,韩萌,王乐,李小娟,程浩东. 基于滑动窗口的含负项高效用模式挖掘方法. 郑州大学学报(理学版). 2022(04): 55-63 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 1487
- HTML全文浏览量: 1
- PDF下载量: 1305
- 被引次数: 20