Bayesian Current Disaggregation: Sensing the Current Waveforms of Household Appliances Using One Sensor
-
摘要: 通过单个传感器对家庭中各个电器的用电行为进行感知是普适计算中的一个重要应用,其关键问题是电流分解,即在给定总电流波形情况下计算各个电器的实际电流.此问题现有2类求解方法:稳态估计方法和线性分解方法.前一类方法基于电器稳态耗电假设,使用稳态波形估计电器的工作电流.虽然该类方法能避免电器间的相互干扰,但是其结果不能反映总电流的实时变化.后一类方法通过模型约束或数据约束对电流波形进行线性降维,之后将总电流分解到各个低维线性空间中.虽然其分解结果能够反映总电流的实时变化,但是相似电器会降低分解结果的精度.从贝叶斯统计的角度将上述方法的关键假设松弛为位置向量先验分布与噪音先验分布,并提出了基于这2个分布的贝叶斯电流分解方法.利用真实用电数据,构造了多组仿真实验对此方法进行评测.实验结果表明:提出方法分解精度高于原有2类方法,其感知结果既能够反映总电流及各个电器电流的实时变化,又能够降低相似电器对分解结果的干扰.Abstract: An important application of pervasive computing is to obtain the electricity usage information for each appliance in a household using one sensor. The key problem of this application is current disaggregating, which is to estimate the currents of individual appliances from the total current waveform. Existing methods to solve this problem can be classified into two classes: steady-state estimation methods and linear disaggregating methods. Based on the steady-state load assumption, the methods in the first class estimate the current for a running appliance using its steady-state current waveform. These methods can avoid the interference between appliances. But the results of these methods cannot reflect the real-time changes of the total current. The methods in the second class reduce the dimensions of the current waveforms for a specific appliance using model constraints or data constraints, and disaggregate the total current into the linear spaces with low dimensions. The results of these methods can reflect the real-time change of the total current, but similar appliances reduce the accuracy of disaggregating results. From the perspective of the Bayesian statistics, this paper relaxes the key assumptions of the above methods as the prior of position vectors and the prior of noises, and proposes a Bayesian current disaggregating method based these two priors. Using the electricity usage data generated by actual appliances, we conduct several simulation experiments to evaluate our method. The experiment results show that the accuracy of the proposed method is higher than previous methods. Our method not only reflects the real-time change of the total current, but also reduces the effects of similar appliances on the disaggregating results.
-
-
期刊类型引用(27)
1. 顾敏,徐雅男,王辛迪,花敏,周雯. 多用户MIMO-MEC网络中基于APSO的任务卸载研究. 无线电工程. 2024(03): 711-718 . 百度学术
2. 王斐然,郭昕阳,张峰. 基于边缘计算的输电线路巡检设备协同调配研究. 自动化仪表. 2024(05): 123-126 . 百度学术
3. 史晓蒙,吕晓鹏,魏健康,王凌. 基于算法组合的端边云任务处理方法. 价值工程. 2024(36): 108-112 . 百度学术
4. 向朝参,程文辉,张昭,焦贤龙,屈毓锛,陈超,戴海鹏. 基于边缘智能计算的城市交通感知数据自适应恢复. 计算机研究与发展. 2023(03): 619-634 . 本站查看
5. 邵梁,何星舟,尚俊娜. 边缘计算中利用改进型遗传算法的任务卸载策略. 计算机应用与软件. 2023(11): 48-57 . 百度学术
6. 高仕斌,刘帝洋,韦晓广,康高强,罗嘉明,雷杰宇. 基于数字孪生网络的牵引供电智能运维体系与应用架构. 铁道学报. 2023(12): 1-15 . 百度学术
7. 张彦虎,鄢丽娟,马志愤,张彦军. 一种适用于多任务多资源移动边缘计算环境下的改进粒子群算力卸载算法. 计算机与现代化. 2022(05): 54-60+67 . 百度学术
8. 刘春林,秦进. 面向5G网络的移动边缘计算节点部署算法设计. 计算机仿真. 2022(12): 436-439+473 . 百度学术
9. 张开强,蒋从锋,程小兰,贾刚勇,张纪林,万健. 多分辨率下资源感知的图像目标自适应缩放检测. 计算机科学. 2021(04): 180-186 . 百度学术
10. 乐光学,陈光鲁,卢敏,杨晓慧,刘建华,黄淳岚,杨忠明. 一种基于K-shell影响力最大化的路径择优计算迁移算法. 计算机研究与发展. 2021(09): 2025-2039 . 本站查看
11. 苏命峰,王国军,李仁发. 边云协同计算中基于预测的资源部署与任务调度优化. 计算机研究与发展. 2021(11): 2558-2570 . 本站查看
12. 贾觐,暴占彪. 改进GA的边缘计算任务卸载与资源分配策略. 计算机工程与设计. 2021(11): 3009-3017 . 百度学术
13. 汪小威,林宁,胡玉平. 移动边缘计算中利用BPSO的任务卸载策略. 计算机工程与设计. 2021(12): 3333-3341 . 百度学术
14. 尹高,石远明. 移动边缘网络中深度学习任务卸载方案. 重庆邮电大学学报(自然科学版). 2020(01): 38-46 . 百度学术
15. 丁雪乾,薛建彬. 边缘计算下基于Lyapunov优化的系统资源分配策略. 微电子学与计算机. 2020(02): 63-68 . 百度学术
16. 白昱阳,黄彦浩,陈思远,张俊,李柏青,王飞跃. 云边智能:电力系统运行控制的边缘计算方法及其应用现状与展望. 自动化学报. 2020(03): 397-410 . 百度学术
17. 乐光学,戴亚盛,杨晓慧,刘建华,游真旭,朱友康. 边缘计算可信协同服务策略建模. 计算机研究与发展. 2020(05): 1080-1102 . 本站查看
18. 盛津芳,滕潇雨,李伟民,王斌. 移动边缘计算中基于改进拍卖模型的计算卸载策略. 计算机应用研究. 2020(06): 1688-1692 . 百度学术
19. 胡锦天,王高才,徐晓桐. 移动边缘计算中具有能耗优化的任务迁移策略. 计算机科学. 2020(06): 260-265 . 百度学术
20. 周振宇,陈亚鹏,潘超,赵雄文,张磊,汪中原. 面向智能电力巡检的高可靠低时延移动边缘计算技术. 高电压技术. 2020(06): 1895-1902 . 百度学术
21. 吕洁娜,张家波,张祖凡,甘臣权. 移动边缘计算卸载策略综述. 小型微型计算机系统. 2020(09): 1866-1877 . 百度学术
22. 张伟. 边缘计算的任务迁移机制研究. 软件导刊. 2020(09): 48-53 . 百度学术
23. 路亚. MEC多服务器启发式联合任务卸载和资源分配策略. 计算机应用与软件. 2020(10): 77-84 . 百度学术
24. 方加娟,李凯. 基于边缘云和移动辅助设备的计算卸载优化方案. 计算机应用与软件. 2020(12): 6-12 . 百度学术
25. 危泽华,曾玲玲. 基于Stackelberg博弈论的边缘计算卸载决策方法. 数学的实践与认识. 2019(11): 91-100 . 百度学术
26. 居晓琴. 移动边缘计算的QoE视频缓存方法. 电脑与信息技术. 2019(05): 44-47 . 百度学术
27. 乐光学,戴亚盛,杨晓慧,朱友康,游真旭,刘建生. 边缘计算多约束可信协同任务迁移策略. 电信科学. 2019(11): 36-50 . 百度学术
其他类型引用(65)
计量
- 文章访问数: 1168
- HTML全文浏览量: 2
- PDF下载量: 768
- 被引次数: 92