Survey on Single Disk Failure Recovery Methods for Erasure Coded Storage Systems
-
摘要: 随着云存储的迅猛发展与大数据时代的来临,越来越多的存储系统开始采用纠删码技术,以保障数据的可靠性.在基于纠删码的存储系统中,一旦有磁盘出错,系统需根据其他磁盘里存储的冗余信息,重构所有失效数据.由于当前存储系统中绝大部分磁盘错误都是单磁盘错误,因此,如何快速地在单磁盘错误的情况下重构失效数据,已成为存储系统的研究热点.首先介绍了存储系统中基于纠删码的单磁盘错误重构优化方法的研究背景与研究意义,给出了纠删码的基本概念与定义,并分析了单磁盘错误重构优化的基本原理;接着归纳了现有的一些主流单磁盘错误重构方法的构造算法及其优缺点与适用范围,并分类介绍了一些用于优化单磁盘错误重构效率的新型纠删码技术;最后指出了存储系统中基于纠删码的磁盘错误重构方法的进一步研究方向.Abstract: With the rapid development of cloud storage, erasure codes which can tolerate a series of disk failures with low storage overhead have attracted a lot of attentions. The implementations for erasure codes constructing over storage systems are erasure coded storage systems. Once disk failures happen, erasure coded storage systems need to access the information storing on the surviving disks, and then reconstruct the lost information by a certain recovery algorithm. With the development of storage scale, disk failures happen very frequently, where most of disk failures are single disk failure. Therefore, how to fast recover the lost data from single disk failures has becoming a key problem for erasure coded storage systems. In this paper, we first introduce the background and significance for single disk failure recoveries, and then give some fundamental terms and principles for erasure codes. Afterward, we illustrate the hybrid recovery principle, elaborate the key ideas for current construction-based recovery methods and search-based recovery methods in detail, and summarize their typical application scenarios. We also summarize some new erasure coding techniques for optimizing the single disk failure recovery efficiency. At the end of the paper, we discuss the research directions for disk failure recoveries under erasure coded storage systems in the future.
-
Keywords:
- storage system /
- erasure code /
- reliability /
- disk failure /
- data recovery method
-
-
期刊类型引用(11)
1. 袁子轩,张峰,许岗,魏光辉,石永强. 融合MAML和TGAT的机会网络动态链路预测模型. 小型微型计算机系统. 2024(12): 2957-2963 . 百度学术
2. 曹志威,樊志杰,王青杨,韩伟力,李欣. 一种降噪自编码器的复杂网络链路预测算法. 小型微型计算机系统. 2023(03): 665-672 . 百度学术
3. 刘林峰,于子兴,祝贺. 基于门控循环单元的移动社会网络链路预测方法. 计算机研究与发展. 2023(03): 705-716 . 本站查看
4. 王曙燕,巩婧怡. 融合节点标签与强弱关系的链路预测算法. 计算机工程与应用. 2022(18): 71-77 . 百度学术
5. 张瑾,朱桂祥,王宇琛,郑烁佳,陈镜潞. 基于异质图表达学习的跨境电商推荐模型. 电子与信息学报. 2022(11): 4008-4017 . 百度学术
6. 唐明虎. 基于多种信息组合模式的非负矩阵分解链路预测模型. 计算机应用研究. 2021(05): 1393-1397+1408 . 百度学术
7. 顾秋阳,吴宝,池仁勇. 基于高阶路径相似度的复杂网络链路预测方法. 通信学报. 2021(07): 61-69 . 百度学术
8. 许爽,李淼磊. 基于子图特征的科学家合作网络链路预测. 大连民族大学学报. 2020(01): 51-63 . 百度学术
9. 张尚田,陈光,邱天. 基于融合特征的LSTM评分预测. 计算机与现代化. 2020(03): 49-53+59 . 百度学术
10. 顾秋阳,琚春华,吴功兴. 基于子图演化与改进蚁群优化算法的社交网络链路预测方法. 通信学报. 2020(12): 21-35 . 百度学术
11. 李琦,王智强,梁吉业. 基于PU学习的链接预测方法. 模式识别与人工智能. 2019(09): 793-799 . 百度学术
其他类型引用(18)
计量
- 文章访问数: 1613
- HTML全文浏览量: 2
- PDF下载量: 831
- 被引次数: 29