• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于组合历史的交互式服务推荐方法

潘伟丰, 姜波, 李兵, 胡博, 宋贝贝

潘伟丰, 姜波, 李兵, 胡博, 宋贝贝. 基于组合历史的交互式服务推荐方法[J]. 计算机研究与发展, 2018, 55(3): 613-628. DOI: 10.7544/issn1000-1239.2018.20160521
引用本文: 潘伟丰, 姜波, 李兵, 胡博, 宋贝贝. 基于组合历史的交互式服务推荐方法[J]. 计算机研究与发展, 2018, 55(3): 613-628. DOI: 10.7544/issn1000-1239.2018.20160521
Pan Weifeng, Jiang Bo, Li Bing, Hu Bo, Song Beibei. Interactive Service Recommendation Based on Composition History[J]. Journal of Computer Research and Development, 2018, 55(3): 613-628. DOI: 10.7544/issn1000-1239.2018.20160521
Citation: Pan Weifeng, Jiang Bo, Li Bing, Hu Bo, Song Beibei. Interactive Service Recommendation Based on Composition History[J]. Journal of Computer Research and Development, 2018, 55(3): 613-628. DOI: 10.7544/issn1000-1239.2018.20160521
潘伟丰, 姜波, 李兵, 胡博, 宋贝贝. 基于组合历史的交互式服务推荐方法[J]. 计算机研究与发展, 2018, 55(3): 613-628. CSTR: 32373.14.issn1000-1239.2018.20160521
引用本文: 潘伟丰, 姜波, 李兵, 胡博, 宋贝贝. 基于组合历史的交互式服务推荐方法[J]. 计算机研究与发展, 2018, 55(3): 613-628. CSTR: 32373.14.issn1000-1239.2018.20160521
Pan Weifeng, Jiang Bo, Li Bing, Hu Bo, Song Beibei. Interactive Service Recommendation Based on Composition History[J]. Journal of Computer Research and Development, 2018, 55(3): 613-628. CSTR: 32373.14.issn1000-1239.2018.20160521
Citation: Pan Weifeng, Jiang Bo, Li Bing, Hu Bo, Song Beibei. Interactive Service Recommendation Based on Composition History[J]. Journal of Computer Research and Development, 2018, 55(3): 613-628. CSTR: 32373.14.issn1000-1239.2018.20160521

基于组合历史的交互式服务推荐方法

基金项目: 国家自然科学基金项目(61202048,61273216,61402406);浙江省自然科学基金项目(LY15F020004)
详细信息
  • 中图分类号: TP311

Interactive Service Recommendation Based on Composition History

  • 摘要: 随着服务种类和数量的飞速增长,如何发现满足用户需求的服务成为亟待解决的关键问题之一.服务推荐技术被认为是解决服务资源过载问题的有效方法之一.但是,现有的服务推荐方法存在数据难以获取和未考虑所推荐服务的可用性及与已有服务的可组合性等问题.有鉴于此,提出了一种基于服务组合历史的交互式服务推荐方法.该方法使用隶属网抽象服务组合历史(复合服务、原子服务及他们之间的隶属关系),通过单模投影获取服务间的组合关系,并利用骨干网挖掘过滤无效的服务组合关系;使用度和度分布分析服务的使用模式;考虑服务的失效问题,并根据服务的不同使用场景提出了相应的服务推荐算法.最后,使用ProgrammableWeb网站提供的真实服务数据验证了所提方法的正确性和有效性.
    Abstract: With the rapid increasing number of services and their types, how to discover the composible services which can meet uer’s requirements is one of the key issues that need to be resolved. Service recommendation technique has become one of the effective methods to deal with the problem of service resource overload. However, the existing service recommendation techniques usually ultilize service data which are hard to be collected and they also neglect the usability and composiblity of the services to be recommended. To avoid these limitations, this paper, utilizing service composition histories, introduces the theory and methodology in the complex network research and proposes an interactive service recommendation approach. It uses an affiliation network to abstract service composition histories (i.e., composite services, atomic services, and the affiliation relationships between them), obtains the service composition relationships by one-mode projection, and introduces the backbone network extraction technology to filter out the invalid compostion relationships; it uses degree and degree distribution to mine the service usage patterns; it takes into account the situation of the failure of services and finally proposes several algorithms for service recommendation according to three usage scenarios. Real data of services crawed from ProgrammableWeb are used as subjects to demonstrate the correctness and feasibility of the proposed approach.
  • 期刊类型引用(27)

    1. 顾敏,徐雅男,王辛迪,花敏,周雯. 多用户MIMO-MEC网络中基于APSO的任务卸载研究. 无线电工程. 2024(03): 711-718 . 百度学术
    2. 王斐然,郭昕阳,张峰. 基于边缘计算的输电线路巡检设备协同调配研究. 自动化仪表. 2024(05): 123-126 . 百度学术
    3. 史晓蒙,吕晓鹏,魏健康,王凌. 基于算法组合的端边云任务处理方法. 价值工程. 2024(36): 108-112 . 百度学术
    4. 向朝参,程文辉,张昭,焦贤龙,屈毓锛,陈超,戴海鹏. 基于边缘智能计算的城市交通感知数据自适应恢复. 计算机研究与发展. 2023(03): 619-634 . 本站查看
    5. 邵梁,何星舟,尚俊娜. 边缘计算中利用改进型遗传算法的任务卸载策略. 计算机应用与软件. 2023(11): 48-57 . 百度学术
    6. 高仕斌,刘帝洋,韦晓广,康高强,罗嘉明,雷杰宇. 基于数字孪生网络的牵引供电智能运维体系与应用架构. 铁道学报. 2023(12): 1-15 . 百度学术
    7. 张彦虎,鄢丽娟,马志愤,张彦军. 一种适用于多任务多资源移动边缘计算环境下的改进粒子群算力卸载算法. 计算机与现代化. 2022(05): 54-60+67 . 百度学术
    8. 刘春林,秦进. 面向5G网络的移动边缘计算节点部署算法设计. 计算机仿真. 2022(12): 436-439+473 . 百度学术
    9. 张开强,蒋从锋,程小兰,贾刚勇,张纪林,万健. 多分辨率下资源感知的图像目标自适应缩放检测. 计算机科学. 2021(04): 180-186 . 百度学术
    10. 乐光学,陈光鲁,卢敏,杨晓慧,刘建华,黄淳岚,杨忠明. 一种基于K-shell影响力最大化的路径择优计算迁移算法. 计算机研究与发展. 2021(09): 2025-2039 . 本站查看
    11. 苏命峰,王国军,李仁发. 边云协同计算中基于预测的资源部署与任务调度优化. 计算机研究与发展. 2021(11): 2558-2570 . 本站查看
    12. 贾觐,暴占彪. 改进GA的边缘计算任务卸载与资源分配策略. 计算机工程与设计. 2021(11): 3009-3017 . 百度学术
    13. 汪小威,林宁,胡玉平. 移动边缘计算中利用BPSO的任务卸载策略. 计算机工程与设计. 2021(12): 3333-3341 . 百度学术
    14. 尹高,石远明. 移动边缘网络中深度学习任务卸载方案. 重庆邮电大学学报(自然科学版). 2020(01): 38-46 . 百度学术
    15. 丁雪乾,薛建彬. 边缘计算下基于Lyapunov优化的系统资源分配策略. 微电子学与计算机. 2020(02): 63-68 . 百度学术
    16. 白昱阳,黄彦浩,陈思远,张俊,李柏青,王飞跃. 云边智能:电力系统运行控制的边缘计算方法及其应用现状与展望. 自动化学报. 2020(03): 397-410 . 百度学术
    17. 乐光学,戴亚盛,杨晓慧,刘建华,游真旭,朱友康. 边缘计算可信协同服务策略建模. 计算机研究与发展. 2020(05): 1080-1102 . 本站查看
    18. 盛津芳,滕潇雨,李伟民,王斌. 移动边缘计算中基于改进拍卖模型的计算卸载策略. 计算机应用研究. 2020(06): 1688-1692 . 百度学术
    19. 胡锦天,王高才,徐晓桐. 移动边缘计算中具有能耗优化的任务迁移策略. 计算机科学. 2020(06): 260-265 . 百度学术
    20. 周振宇,陈亚鹏,潘超,赵雄文,张磊,汪中原. 面向智能电力巡检的高可靠低时延移动边缘计算技术. 高电压技术. 2020(06): 1895-1902 . 百度学术
    21. 吕洁娜,张家波,张祖凡,甘臣权. 移动边缘计算卸载策略综述. 小型微型计算机系统. 2020(09): 1866-1877 . 百度学术
    22. 张伟. 边缘计算的任务迁移机制研究. 软件导刊. 2020(09): 48-53 . 百度学术
    23. 路亚. MEC多服务器启发式联合任务卸载和资源分配策略. 计算机应用与软件. 2020(10): 77-84 . 百度学术
    24. 方加娟,李凯. 基于边缘云和移动辅助设备的计算卸载优化方案. 计算机应用与软件. 2020(12): 6-12 . 百度学术
    25. 危泽华,曾玲玲. 基于Stackelberg博弈论的边缘计算卸载决策方法. 数学的实践与认识. 2019(11): 91-100 . 百度学术
    26. 居晓琴. 移动边缘计算的QoE视频缓存方法. 电脑与信息技术. 2019(05): 44-47 . 百度学术
    27. 乐光学,戴亚盛,杨晓慧,朱友康,游真旭,刘建生. 边缘计算多约束可信协同任务迁移策略. 电信科学. 2019(11): 36-50 . 百度学术

    其他类型引用(65)

计量
  • 文章访问数:  1315
  • HTML全文浏览量:  3
  • PDF下载量:  883
  • 被引次数: 92
出版历程
  • 发布日期:  2018-02-28

目录

    /

    返回文章
    返回