• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于近似l\-0范数的稀疏信号重构

聂栋栋, 弓耀玲

聂栋栋, 弓耀玲. 基于近似l\-0范数的稀疏信号重构[J]. 计算机研究与发展, 2018, 55(5): 1090-1096. DOI: 10.7544/issn1000-1239.2018.20160829
引用本文: 聂栋栋, 弓耀玲. 基于近似l\-0范数的稀疏信号重构[J]. 计算机研究与发展, 2018, 55(5): 1090-1096. DOI: 10.7544/issn1000-1239.2018.20160829
Nie Dongdong, Gong Yaoling. A Sparse Signal Reconstruction Algorithm Based on Approximate l\-0 Norm[J]. Journal of Computer Research and Development, 2018, 55(5): 1090-1096. DOI: 10.7544/issn1000-1239.2018.20160829
Citation: Nie Dongdong, Gong Yaoling. A Sparse Signal Reconstruction Algorithm Based on Approximate l\-0 Norm[J]. Journal of Computer Research and Development, 2018, 55(5): 1090-1096. DOI: 10.7544/issn1000-1239.2018.20160829
聂栋栋, 弓耀玲. 基于近似l\-0范数的稀疏信号重构[J]. 计算机研究与发展, 2018, 55(5): 1090-1096. CSTR: 32373.14.issn1000-1239.2018.20160829
引用本文: 聂栋栋, 弓耀玲. 基于近似l\-0范数的稀疏信号重构[J]. 计算机研究与发展, 2018, 55(5): 1090-1096. CSTR: 32373.14.issn1000-1239.2018.20160829
Nie Dongdong, Gong Yaoling. A Sparse Signal Reconstruction Algorithm Based on Approximate l\-0 Norm[J]. Journal of Computer Research and Development, 2018, 55(5): 1090-1096. CSTR: 32373.14.issn1000-1239.2018.20160829
Citation: Nie Dongdong, Gong Yaoling. A Sparse Signal Reconstruction Algorithm Based on Approximate l\-0 Norm[J]. Journal of Computer Research and Development, 2018, 55(5): 1090-1096. CSTR: 32373.14.issn1000-1239.2018.20160829

基于近似l\-0范数的稀疏信号重构

基金项目: 燕山大学基础研究专项课题(理工A类)(15LGA016)
详细信息
  • 中图分类号: TP391; TN911.73

A Sparse Signal Reconstruction Algorithm Based on Approximate l\-0 Norm

  • 摘要: 信号重构算法是压缩感知的关键.基于近似l\-0范数的信号重构选取一个连续函数近似估计l\-0范数,从而将l\-0范数最小化问题转化为平滑函数的优化问题.该算法的关键在于选择合适的平滑函数和优化算法.为了提高压缩感知中稀疏信号恢复的精度,在之前工作的基础上,提出用一个简单的分式函数的和来近似估计l\-0范数.然后通过牛顿迭代算法求解该函数的无约束优化问题的稀疏解,整合了似零范数算法快速收敛和牛顿迭代法精度高的优点.这样就可以在较少的时间内平滑且有效地近似l\-0范数的最小化问题.仿真实验测试了所提算法在不同的压缩比、稀疏度及噪声水平情况下的性能,并与现有的同类算法进行了比较.结果表明:所提算法比现有的同类算法性能更好,重建信号的精度有了较大的提升,这有效地提高了在同等条件下压缩感知信号的恢复质量.
    Abstract: The signal reconstruction algorithm is the key to compressed sensing. Signal reconstruction based on approximate l\-0 norm chooses a continuous function to estimate l\-0 norm, thus the minimization problem of l\-0 norm is transformed into an optimization problem of a smooth function. It is critical for the signal reconstruction algorithm to select the appropriate smooth function and optimization algorithm. To improve the accuracy of the sparse signal recovered in the compression sense, the sum of a simple fractional function is proposed to approximate l\-0 norm on the basis of previous work in the paper. Then the sparse solution of an unconstrained optimization problem of the function is solved by Newton iterative algorithm, which effectively integrated the advantages of the fast convergence of approximate l\-0 norm algorithm and the high precision of Newton iteration algorithm. Thus, the minimization of l\-0 norm is approximated smoothly and efficiently within less time. The performance of the proposed algorithm is tested and compared with some existing similar algorithms in the case of different compression ratio, sparseness and noise levels in the simulation experiments. Simulation results show that the performance of the proposed algorithm is better than the existing similar algorithms, and the precision of reconstructed signal is greatly improved, which improves the signal recovery quality in compressed sensing effectively under the same conditions.
  • 期刊类型引用(7)

    1. 刘洋铄,刘宏宇,葛焕敏. 无约束的l_(2, 1)-分析法重构冗余紧框架下分块稀疏信号的条件. 系统科学与数学. 2022(03): 509-527 . 百度学术
    2. 张莉莉,娄媛,胡祥培. 面向生产计划调整的资源参数反演逆优化方法. 系统管理学报. 2021(03): 438-450 . 百度学术
    3. 冯一凡,张月琴,陈健. 基于改进的深度置信网络的视频资源利用者类型识别研究. 现代电子技术. 2021(13): 50-54 . 百度学术
    4. 马敏,刘一斐,王世喜. 基于近似L_0范数的电容层析成像敏感场优化算法. 激光与光电子学进展. 2021(12): 280-289 . 百度学术
    5. 陆亦齐,卞心怡. 基于压缩感知理论的配电网数据压缩模型. 电力大数据. 2021(10): 9-18 . 百度学术
    6. 曹义亲,杨世超,谢舒慧. 基于NSST的PCNN-SR卫星遥感图像融合方法. 航天控制. 2020(02): 44-50 . 百度学术
    7. 刘昊霖,池金龙,邓清勇,彭鑫,裴廷睿. 基于自适应局部搜索的进化多目标稀疏重构方法. 计算机研究与发展. 2019(07): 1420-1431 . 本站查看

    其他类型引用(10)

计量
  • 文章访问数:  1092
  • HTML全文浏览量:  2
  • PDF下载量:  485
  • 被引次数: 17
出版历程
  • 发布日期:  2018-04-30

目录

    /

    返回文章
    返回