• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于密度峰值聚类的动态群组发现方法

王海艳, 肖亦康

王海艳, 肖亦康. 基于密度峰值聚类的动态群组发现方法[J]. 计算机研究与发展, 2018, 55(2): 391-399. DOI: 10.7544/issn1000-1239.2018.20160928
引用本文: 王海艳, 肖亦康. 基于密度峰值聚类的动态群组发现方法[J]. 计算机研究与发展, 2018, 55(2): 391-399. DOI: 10.7544/issn1000-1239.2018.20160928
Wang Haiyan, Xiao Yikang. Dynamic Group Discovery Based on Density Peaks Clustering[J]. Journal of Computer Research and Development, 2018, 55(2): 391-399. DOI: 10.7544/issn1000-1239.2018.20160928
Citation: Wang Haiyan, Xiao Yikang. Dynamic Group Discovery Based on Density Peaks Clustering[J]. Journal of Computer Research and Development, 2018, 55(2): 391-399. DOI: 10.7544/issn1000-1239.2018.20160928
王海艳, 肖亦康. 基于密度峰值聚类的动态群组发现方法[J]. 计算机研究与发展, 2018, 55(2): 391-399. CSTR: 32373.14.issn1000-1239.2018.20160928
引用本文: 王海艳, 肖亦康. 基于密度峰值聚类的动态群组发现方法[J]. 计算机研究与发展, 2018, 55(2): 391-399. CSTR: 32373.14.issn1000-1239.2018.20160928
Wang Haiyan, Xiao Yikang. Dynamic Group Discovery Based on Density Peaks Clustering[J]. Journal of Computer Research and Development, 2018, 55(2): 391-399. CSTR: 32373.14.issn1000-1239.2018.20160928
Citation: Wang Haiyan, Xiao Yikang. Dynamic Group Discovery Based on Density Peaks Clustering[J]. Journal of Computer Research and Development, 2018, 55(2): 391-399. CSTR: 32373.14.issn1000-1239.2018.20160928

基于密度峰值聚类的动态群组发现方法

基金项目: 国家自然科学基金项目(61772285,61373138)
详细信息
  • 中图分类号: TP311

Dynamic Group Discovery Based on Density Peaks Clustering

  • 摘要: 近年来,群组推荐由于其良好的实用价值得到了广泛关注.群组发现作为群组推荐的前提环节,其发现结果对推荐效果有着至关重要的影响,群组相似度越高,推荐的效果和稳定性越好.针对现有群组发现方法中存在忽略用户倾向具有时间迁移性和群组可重叠性展开研究,提出了一种基于密度峰值聚类的动态群组发现方法.该方法首先通过动态泊松分解得到量化的用户动态倾向,然后通过高阶奇异值分解预测不同的时间节点下用户对不同项目的倾向,并根据计算所得的用户倾向构建高相似度用户集合,最后利用改进的基于密度峰值的聚类算法对用户集合进行划分,实现群组发现.仿真实验对比结果表明:上述基于密度峰值聚类的群组发现方法具有更好的群组推荐效果.
    Abstract: Group recommendation has recently received wide attention due to its significance in real applications. As a premier step of group recommendation, group discovery is very important and discovery results will impact a lot on the performance of group recommendation. The higher similarity the groups have, the better effectiveness and stability the recommendation results will possess. However, current group discovery methods seldom consider the dynamicity of users’ tendency with variance of time context, nor do they support the existence of groups overlapping. In order to address the problems above, a dynamic group discovery method based on density peaks clustering (DGD-BDPC) is put forward in this paper. In the proposed DGD-BDPC method, quantitative users’ dynamic tendency is firstly obtained by dynamic poisson factorization. And secondly, users’ tendency under different time nodes for various items will be predicted with the employment of high order singular value decomposition (HOSVD) and user sets with high similarity will then be built according to users’ tendency. Finally, user sets will be clustered with a modification of density peaks clustering algorithm and group discovery will be realized successfully. Experimental results show that the proposed dynamic group discovery method based on density peaks clustering has higher accuracy, lower error and better stability compared with some other methods.
  • 期刊类型引用(7)

    1. 毛伊敏,甘德瑾,廖列法,陈志刚. 基于Spark框架和ASPSO的并行划分聚类算法. 通信学报. 2022(03): 148-163 . 百度学术
    2. 王永贵,林佳敏,何佳玉. 融合领导者影响与隐式信任度的群组推荐方法. 计算机工程与应用. 2022(09): 98-106 . 百度学术
    3. 刘鑫,梅红岩,王嘉豪,李晓会. 图神经网络推荐方法研究. 计算机工程与应用. 2022(10): 41-49 . 百度学术
    4. 刘聪,谢莉,杨慧中. 基于改进DPC的青霉素发酵过程多模型软测量建模. 化工学报. 2021(03): 1606-1615 . 百度学术
    5. 刘功民,朱俊杰. WSN中利用双重接收器结合自适应加权数据融合的簇首优化聚类算法. 计算机应用与软件. 2021(05): 145-151 . 百度学术
    6. 任昌鸿,安军. 改进PSO结合DSA技术的无线传感器网络均衡密度聚类方法. 计算机应用与软件. 2020(08): 122-129 . 百度学术
    7. 许晓明,梅红岩,于恒,李晓会. 基于偏好融合的群组推荐方法研究综述. 小型微型计算机系统. 2020(12): 2500-2508 . 百度学术

    其他类型引用(14)

计量
  • 文章访问数:  1240
  • HTML全文浏览量:  1
  • PDF下载量:  536
  • 被引次数: 21
出版历程
  • 发布日期:  2018-01-31

目录

    /

    返回文章
    返回