A Collaborative Collusion Detection Method Based on Online Clustering
-
摘要: 针对大规模服务计算环境中聚集反馈、协同作弊和虚假评价等问题,通过融合在线聚类与共谋欺骗检测技术,提出了一种支持大规模服务可信度分析的在线协同作弊用户发现方法.首先,根据大规模服务系统日志中用户反馈评分信息,综合考虑大规模服务计算的大数据特性问题,设计了一种新颖的基于改进更新规则的在线KMeans聚类算法:在基于随机梯度法的在线聚类算法的基础上,采用了一种改进的基于小批量学习的在线聚类方法;并且,通过自动修正权重的聚类分组方差计算,进行递减增量优化,提高了在线KMeans算法的聚类质量,同时保证了聚类算法的时间效率;然后,充分考虑了协同作弊团体的同谋行为特征和协同攻击现象,利用聚类分组的性质和同谋团体异常性的特征,检测出协同作弊团体.仿真实验结果表明:提出的基于在线聚类的协同作弊团体识别方法具有良好时间性能,有效地解决了大规模服务计算中虚假反馈的问题.Abstract: Cloud computing has been successfully used to integrate various Web services for facilitating the automation of large-scale distributed applications. However, there exist numerous noise ratings given in service-oriented cloud applications by collusion groups. Collusion detection is one of the most import issues in the emerging service-oriented cloud applications. Especially with the emergence of massive Web services, it is still a tough challenge to identify collaborative collusion groups in large-scale cloud systems using the classical clustering algorithm with batch computing mode. To tackle the challenge, a novel online clustering-based detection method is proposed to find collaborative collusion groups in an efficient and effective manner. Firstly, a mini-batch KMeans clustering method is employed to reduce the computational time for mining the large-scale service data; secondly, to improve the quality of the online clustering, a new and modified update rule is designed for the mini-batch KMeans clustering method, which adaptively optimizes the clustering weights with variance through an iterative procedure; finally, based on measuring the behavior similarity and group ratings deviation of malicious peers, a binary decision diagram evaluation method is presented for detecting the bias and prestige of collusion groups in a visual manner. Theoretical analysis is conducted for validation purpose. Extensive experimentation and comparison with related work indicate that the proposed approach is feasible and effective.
-
-
期刊类型引用(15)
1. 叶进,谢紫琪,肖庆宇,宋玲,李晓欢. 数据中心网络中基于ELM的流簇大小推理机制. 计算机科学与探索. 2021(02): 261-269 . 百度学术
2. 林霄,姬硕,岳胜男,孙卫强,胡卫生. 面向跨数据中心网络的节点约束存储转发调度方法. 计算机研究与发展. 2021(02): 319-337 . 本站查看
3. 王金焱. 异构无线网络多路径流量调度算法研究. 常熟理工学院学报. 2021(02): 70-75 . 百度学术
4. 董金良,刘小伟,李海江. 基于蚁群优化的通信网络负荷信息分散协调调度. 水电与抽水蓄能. 2021(03): 68-71 . 百度学术
5. 韩茂玲. 复杂网络大规模数据流均衡调度方法. 成都工业学院学报. 2021(03): 38-42 . 百度学术
6. 武自强,周建涛,赵大明,柳林. 数据中心基于服务满足度的网络流避让方法. 计算机工程与应用. 2021(19): 116-122 . 百度学术
7. 时洋 ,文梅 ,费佳伟 ,张春元 . 一种基于DAG的网络流量调度器. 计算机研究与发展. 2021(12): 2798-2810 . 本站查看
8. 李文信,齐恒,徐仁海,周晓波,李克秋. 数据中心网络流量调度的研究进展与趋势. 计算机学报. 2020(04): 600-617 . 百度学术
9. 陈珂,刘亚志,王思晗. 基于流量特征的流调度策略研究综述. 计算机应用研究. 2020(10): 2889-2894 . 百度学术
10. 郑莹,段庆洋,林利祥,游新宇,徐跃东,王新. 深度强化学习在典型网络系统中的应用综述. 无线电通信技术. 2020(06): 603-623 . 百度学术
11. 柯文龙,王勇,叶苗,陈俊奇. Ceph云存储网络中一种业务优先级区分的多播流调度方法. 通信学报. 2020(11): 40-51 . 百度学术
12. 李维虎,张顶山,崔慧明,周龙,朱志挺,谢挺. 数据中心网络coflow调度机制结构构建及仿真. 电子测量技术. 2019(10): 78-81 . 百度学术
13. 康瑾,李革. 面向医院手术排程的智能规划算法研究. 信息技术. 2019(11): 37-41+45 . 百度学术
14. 孙超. 基于模糊反馈的共享网络远程数据控制仿真. 计算机仿真. 2019(10): 409-412+438 . 百度学术
15. 王远. 数据中心网络拥塞控制研究综述. 信息工程大学学报. 2019(06): 714-719 . 百度学术
其他类型引用(13)
计量
- 文章访问数: 1327
- HTML全文浏览量: 3
- PDF下载量: 704
- 被引次数: 28