A Survey on Image-Based Hair Modeling Technique
-
摘要: 头发是人类特征的重要组成部分,是判断一个人的年龄、背景及身份等的重要依据.在虚拟现实和计算机图形学领域,头发建模受到越来越多的研究人员的关注.传统的头发建模是基于物理模拟的,通过设置相关参数构造出不同的头发,计算量很大,建模过程也不直观、难以控制;而基于图像的头发建模方法,具有建模速度快、模型逼真度高等优点,近几年受到研究者重视,开始成为另外一个研究热点.回顾了基于单幅图像的头发建模、基于多幅图像的静态头发建模、基于视频的动态头发建模、头发建模结果的编辑重用等方面的研究进展,并分析总结了各种方法的适用情况及不足,最后提出了基于图像的头发建模技术在未来的发展趋势以及面临的挑战.Abstract: Hair is a vital component of a person’s identity, and it can provide strong cues about age, background and even personality. More and more researchers focus on hair modeling in the field of computer graphics and virtual reality. Traditional hair modeling method is physically-based simulation by setting different parameters. The computation is expensive, and the construction process is not intuitive and difficult to control. The image-based hair modeling method has the advantages of fast modeling and high fidelity. In recent years, researchers have attached great importance to this method. This paper reviews the development of hair modeling based on single image, static hair modeling based on multiple images, dynamic hair modeling based on captured videos, and the editing and reusing of hair modeling results. It also analyzes and summarizes the application and inadequate of each method. In the first section, it summarizes the single-image based hair modeling method which can be divided into two types of orientation-field-based and data-driven-based hair modeling method. The static hair modeling and dynamic hair capture methods are reviewed in the next two parts. The static hair modeling based on multiple images also can be divided into two types of orientation-field-based and data-driven-based method. In the last section, the editing and reusing of hair modeling results are reviewed. The future development trends and challenges of image-based hair modeling are proposed in the end.
-
-
期刊类型引用(9)
1. 李振华,王泓懿,李洋,林灏,杨昕磊. 大规模复杂终端网络的云原生强化设计. 计算机研究与发展. 2024(01): 2-19 . 本站查看
2. 赵旭康,刘晓锋,徐洁. 融合多样频度与分布差异的Android恶意软件检测. 计算机工程与设计. 2024(02): 390-395 . 百度学术
3. 方加娟,丁乙恒. 基于关联规则的Android恶意软件检测技术. 电脑与信息技术. 2024(03): 115-118 . 百度学术
4. 陈志强,韩萌,武红鑫,李慕航,张喜龙. 分段加权的概念漂移检测方法. 计算机应用. 2023(03): 776-784 . 百度学术
5. 李汇来,杨斌,于秀丽,唐晓梅. 软件缺陷预测模型可解释性对比. 计算机科学. 2023(05): 21-30 . 百度学术
6. 潘建文,崔展齐,林高毅,陈翔,郑丽伟. Android恶意应用的静态检测方法综述. 计算机研究与发展. 2023(08): 1875-1894 . 本站查看
7. 殷建艳. 面向云数据库的Android应用风险评估方法. 信息与电脑(理论版). 2023(17): 177-179 . 百度学术
8. 张皓. 基于深度学习的恶意软件动态检测方法研究. 电子技术与软件工程. 2022(03): 43-46 . 百度学术
9. 刘光源. 基于DoI-RNNs模型的恶意软件动态检测方法. 信息与电脑(理论版). 2022(23): 38-40 . 百度学术
其他类型引用(6)
计量
- 文章访问数:
- HTML全文浏览量: 0
- PDF下载量:
- 被引次数: 15