Application Driven Network Latency Measurement Analysis and Optimization Techniques Edge Computing Environment: A Survey
-
摘要: 互联网、移动计算、物联网技术的进步推动了人-机-物环境的深度融合,催生了一大批面向边缘用户的网络搜索、在线社会网络、电子商务、视频监控、智能助理等类型的边缘计算应用.边缘计算应用具有规模巨大、服务质量敏感等特性,对延迟性能提出迫切需求,然而,由于用户访问请求跨边缘网络、广域网、数据中心异构环境,“长尾延迟”问题导致边缘用户的体验质量严重下降.首先综述边缘计算应用的系统架构特征,然后分析长尾延迟的产生原因,分类介绍网络延迟测量的主要理论和方法,并归纳对长尾延迟的优化技术,最后提出在线优化运行环境的思想以及面临的挑战.Abstract: The technical advancements of Internet, mobile computing and Internet of things (IoT) have been pushing the deep integration of human, machine and things, which fostered a lot of end-users oriented network search, online social networks, economical business, video surveillance and intelligent assistant tools, which are typically referred to as online data-intensive applications. These new applications are of large scale and sensitive to the service quality, requiring stringent latency performance. However, end-user requests traverse heterogeneous environments including edge network, wide-area network and the data center, which naturally incurs a long-tail latency issue that significantly degrades users’ experience quality. This paper surveys architectural characteristics of edge-computing applications, analyzes causes of the long-tail latency issue, categorizes key theories and methods of the network latency measurement, summarizes long-tail latency optimization techniques, and finally proposes the idea of constructing an online optimization runtime environment and discusses some open challenges.
-
Keywords:
- edge network /
- edge-computing applications /
- long-tail latency /
- measurement /
- optimization
-
-
期刊类型引用(5)
1. 汤梦晨,吴国文,张红,沈士根,曹奇英. 基于微分博弈的异质无线传感器网络恶意程序传播研究与分析. 计算机应用与软件. 2024(07): 100-105 . 百度学术
2. 蔡翔,丁全,汪玉. 基于博弈论的网络安全实战攻防策略研究. 微型电脑应用. 2024(10): 164-168 . 百度学术
3. 韩峰. 基于云计算的数据驱动网络安全防御技术. 数据通信. 2022(02): 37-40 . 百度学术
4. 魏学勇. 基于Markov模型的智慧校园网络安全攻防策略. 电子设计工程. 2021(15): 72-76 . 百度学术
5. 徐茂淑. 计算机网络防御策略求精关键技术分析. 信息与电脑(理论版). 2020(20): 203-205 . 百度学术
其他类型引用(6)
计量
- 文章访问数: 1883
- HTML全文浏览量: 4
- PDF下载量: 1115
- 被引次数: 11