Application Driven Network Latency Measurement Analysis and Optimization Techniques Edge Computing Environment: A Survey
-
摘要: 互联网、移动计算、物联网技术的进步推动了人-机-物环境的深度融合,催生了一大批面向边缘用户的网络搜索、在线社会网络、电子商务、视频监控、智能助理等类型的边缘计算应用.边缘计算应用具有规模巨大、服务质量敏感等特性,对延迟性能提出迫切需求,然而,由于用户访问请求跨边缘网络、广域网、数据中心异构环境,“长尾延迟”问题导致边缘用户的体验质量严重下降.首先综述边缘计算应用的系统架构特征,然后分析长尾延迟的产生原因,分类介绍网络延迟测量的主要理论和方法,并归纳对长尾延迟的优化技术,最后提出在线优化运行环境的思想以及面临的挑战.Abstract: The technical advancements of Internet, mobile computing and Internet of things (IoT) have been pushing the deep integration of human, machine and things, which fostered a lot of end-users oriented network search, online social networks, economical business, video surveillance and intelligent assistant tools, which are typically referred to as online data-intensive applications. These new applications are of large scale and sensitive to the service quality, requiring stringent latency performance. However, end-user requests traverse heterogeneous environments including edge network, wide-area network and the data center, which naturally incurs a long-tail latency issue that significantly degrades users’ experience quality. This paper surveys architectural characteristics of edge-computing applications, analyzes causes of the long-tail latency issue, categorizes key theories and methods of the network latency measurement, summarizes long-tail latency optimization techniques, and finally proposes the idea of constructing an online optimization runtime environment and discusses some open challenges.
-
Keywords:
- edge network /
- edge-computing applications /
- long-tail latency /
- measurement /
- optimization
-
-
期刊类型引用(4)
1. 王海晓,冯星霖,郭敏. 改进H-GASA算法求解网约车拼车服务问题. 内蒙古农业大学学报(自然科学版). 2025(02): 53-62 . 百度学术
2. 张宇,郭仁拥. 基于即时共享率和预测需求密度的一对多车辆共乘匹配. 系统工程理论与实践. 2024(12): 3979-3996 . 百度学术
3. 汪厚俊,郑明飞. 基于改进Dijkstra算法的医院智慧停车路径规划研究. 微型电脑应用. 2022(05): 120-124 . 百度学术
4. 郭羽含,刘永武. 动态车辆共乘问题的双模式协作匹配算法. 计算机研究与发展. 2022(07): 1533-1552 . 本站查看
其他类型引用(6)
计量
- 文章访问数: 1883
- HTML全文浏览量: 4
- PDF下载量: 1115
- 被引次数: 10