• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于用电特征分析的窃电行为识别方法

史玉良, 荣以平, 朱伟义

史玉良, 荣以平, 朱伟义. 基于用电特征分析的窃电行为识别方法[J]. 计算机研究与发展, 2018, 55(8): 1599-1608. DOI: 10.7544/issn1000-1239.2018.20180216
引用本文: 史玉良, 荣以平, 朱伟义. 基于用电特征分析的窃电行为识别方法[J]. 计算机研究与发展, 2018, 55(8): 1599-1608. DOI: 10.7544/issn1000-1239.2018.20180216
Shi Yuliang, Rong Yiping, Zhu Weiyi. Stealing Behavior Recognition Method Based on Electricity Characteristics Analysis[J]. Journal of Computer Research and Development, 2018, 55(8): 1599-1608. DOI: 10.7544/issn1000-1239.2018.20180216
Citation: Shi Yuliang, Rong Yiping, Zhu Weiyi. Stealing Behavior Recognition Method Based on Electricity Characteristics Analysis[J]. Journal of Computer Research and Development, 2018, 55(8): 1599-1608. DOI: 10.7544/issn1000-1239.2018.20180216
史玉良, 荣以平, 朱伟义. 基于用电特征分析的窃电行为识别方法[J]. 计算机研究与发展, 2018, 55(8): 1599-1608. CSTR: 32373.14.issn1000-1239.2018.20180216
引用本文: 史玉良, 荣以平, 朱伟义. 基于用电特征分析的窃电行为识别方法[J]. 计算机研究与发展, 2018, 55(8): 1599-1608. CSTR: 32373.14.issn1000-1239.2018.20180216
Shi Yuliang, Rong Yiping, Zhu Weiyi. Stealing Behavior Recognition Method Based on Electricity Characteristics Analysis[J]. Journal of Computer Research and Development, 2018, 55(8): 1599-1608. CSTR: 32373.14.issn1000-1239.2018.20180216
Citation: Shi Yuliang, Rong Yiping, Zhu Weiyi. Stealing Behavior Recognition Method Based on Electricity Characteristics Analysis[J]. Journal of Computer Research and Development, 2018, 55(8): 1599-1608. CSTR: 32373.14.issn1000-1239.2018.20180216

基于用电特征分析的窃电行为识别方法

基金项目: 山东省泰山产业领军人才工程专项经费(tscy20150305);山东省重点研发计划(2016GGX101008,2016ZDJS01A09);山东省自然科学基金重大基础研究项目(ZR2017ZB0419) This work was supported by the TaiShan Industrial Experts Programme of Shandong Province (tscy20150305), the Primary Research and Development Plan of Shandong Province (2016GGX101008, 2016ZDJS01A09), and the Major Basic Research Project of Natural Science Foundation of Shandong Province (ZR2017ZB0419).
详细信息
  • 中图分类号: TP391

Stealing Behavior Recognition Method Based on Electricity Characteristics Analysis

  • 摘要: 反窃电工作是实现电力企业用电管理不可或缺的环节.针对山东省用电用户数量多、分布面积广、窃电现象逐年上升、检测人员不足等特点,对获取的用户窃电行为数据进行合理的分析、处理,提出一种基于用电特征分析的窃电行为识别方法,实现对窃电嫌疑用户的筛查.该方法首先基于采集样本,以过滤式算法和规则阈值设定的方式,实现采集样本数据的特征提取,从而提高采集数据的有效性;随后以逻辑回归算法构建用户窃电行为诊断模型,实现对窃电嫌疑用户的判定;此外,采用推送、排查、处理和反馈的闭环工作机制不断优化模型,并以国网山东省电力公司用电信息采集系统、营销业务应用系统提供数据进行算例分析,验证了所述方法的可行性与适用性.
    Abstract: Anti-stealing electricity is an indispensable component of electricity enterprise management. In view of the current problems such as the large number of users, the wide distribution area, the increasing year-on-year power stealing, and the lack of supervision personnel, this paper analyzes and handles the data of power stealing behavior, and proposes a stealing behavior recognition method which can identify the stealing users. First, based on the collected samples, this method adopts a filtering algorithm and a regular threshold to implement feature extraction, so as to improve the effectiveness of the collected data. Then, the user’s stealing behavior diagnosis model is constructed based on the logistic regression algorithm to realize the determination of suspected users. In addition, this paper uses the closed-loop working mechanism which continues to update data by the way of pushing, shooting, processing and feedback to continuously optimize the model. According to the collected data provided by the power consumption information collection system and marketing business application system of State Grid Shandong Electric Power Company, the experimental results prove the feasibility and applicability of the method.
  • 期刊类型引用(9)

    1. 郭豆豆,徐伟华. R-FCCL:一种面向高维数据的稳健模糊概念认知学习方法. 计算机研究与发展. 2025(02): 383-396 . 本站查看
    2. 刘彧轩,廖宇晨,刘忠慧. 单条件三元概念构建及其融合推荐应用. 计算机与现代化. 2024(07): 1-6 . 百度学术
    3. 李金海,王坤,陈强强. 三元概念的分布式并行构造算法. 模式识别与人工智能. 2024(10): 873-886 . 百度学术
    4. 王霞,全园,李俊余,吴伟志. 三元概念的增量式构造方法. 南京大学学报(自然科学). 2022(01): 19-28 . 百度学术
    5. 刘忠慧,赵琦,邹璐,闵帆. 三元概念的启发式构建及其在社会化推荐中的应用. 计算机科学. 2021(06): 234-240 . 百度学术
    6. 李金海,贺建君,吴伟志. 多粒度形式概念分析的类属性块优化. 山东大学学报(理学版). 2020(05): 1-12 . 百度学术
    7. 李俊余,李星璇,王霞,吴伟志. 基于三元因子分析的三元概念约简. 南京大学学报(自然科学). 2020(04): 480-493 . 百度学术
    8. 李金海,魏玲,张卓,翟岩慧,张涛,智慧来,米允龙. 概念格理论与方法及其研究展望. 模式识别与人工智能. 2020(07): 619-642 . 百度学术
    9. 王霞,谭斯文,李俊余,吴伟志. 基于条件属性蕴含的概念格构造及简化. 南京大学学报(自然科学). 2019(04): 553-563 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  1904
  • HTML全文浏览量:  4
  • PDF下载量:  915
  • 被引次数: 14
出版历程
  • 发布日期:  2018-07-31

目录

    /

    返回文章
    返回