Probability Matrix Factorization for Link Prediction Based on Information Fusion
-
摘要: 作为一种典型的网络大数据,社交信息网络如微博、Tweeter等,不仅包含用户间复杂的网络结构,而且包含大量用户所发表的微博/Tweet信息.现有链路预测算法大多只利用单方面的网络拓扑信息或非拓扑信息,仍然缺乏有效融合社交信息网络中拓扑与非拓扑信息的链路预测方法.为此,从社交信息网络中用户的主题角度出发,提出一种融合主题相似信息的链路预测方法.首先基于用户文本内容抽取用户的主题表示,并定义用户间的主题相似度;然后基于用户主题相似度,构建了一种用户主题相似稀疏网络;进一步将用户主题相似网络与用户间关注/被关注网络融合在统一的概率矩阵分解框架下,通过学习获得用户的潜在特征表示和网络链路参数;最终在此概率矩阵分解框架下,基于用户的潜在特征表示和链路参数计算得到用户间的链路可能性.所提出的模型提供了一种融合多种网络信息的通用策略和学习方法.实验在包含网络结构与文本信息的4组微博与推特数据集中显示,所提出的融合概率矩阵分解链路方法相比其他链路预测方法更有效.Abstract: As one kind of typical network big data, social-information networks such as Weibo and Twitter include both the complex network structure among users and rich microblog/Tweet information published by users. It is notable that most of the existing methods only make use of the network topological information or the non-topological information for link prediction, but there is still a lack of effective methods by fusing the topological information or non-topological information in social-information networks. A link prediction method is proposed from the perspective of users’ topic by fusing users’ topic similarity in social-information networks. The method goes in accordance with the following sequence: firstly, a topic similarity between users based on users’ topic representation is defined, followed by which a topic similarity-based sparse network is constructed; secondly, the information of the following/followed network and the topic similarity-based network are fused into a unified framework of probabilistic matrix factorization, based on which the latent-feature representation of the network nodes and the linking relation parameters are obtained; finally, the linking probability between network nodes is calculated based on the obtained latent-feature representation and linking relation parameters. The proposed approach provides a general modeling strategy fusing multi-network information and a learning-based solution. Link prediction experiments are conducted on four real network datasets, i.e. Twitter and Weibo. The experimental results demonstrate that the proposed method is more effective than others.
-
-
期刊类型引用(11)
1. 袁子轩,张峰,许岗,魏光辉,石永强. 融合MAML和TGAT的机会网络动态链路预测模型. 小型微型计算机系统. 2024(12): 2957-2963 . 百度学术
2. 曹志威,樊志杰,王青杨,韩伟力,李欣. 一种降噪自编码器的复杂网络链路预测算法. 小型微型计算机系统. 2023(03): 665-672 . 百度学术
3. 刘林峰,于子兴,祝贺. 基于门控循环单元的移动社会网络链路预测方法. 计算机研究与发展. 2023(03): 705-716 . 本站查看
4. 王曙燕,巩婧怡. 融合节点标签与强弱关系的链路预测算法. 计算机工程与应用. 2022(18): 71-77 . 百度学术
5. 张瑾,朱桂祥,王宇琛,郑烁佳,陈镜潞. 基于异质图表达学习的跨境电商推荐模型. 电子与信息学报. 2022(11): 4008-4017 . 百度学术
6. 唐明虎. 基于多种信息组合模式的非负矩阵分解链路预测模型. 计算机应用研究. 2021(05): 1393-1397+1408 . 百度学术
7. 顾秋阳,吴宝,池仁勇. 基于高阶路径相似度的复杂网络链路预测方法. 通信学报. 2021(07): 61-69 . 百度学术
8. 许爽,李淼磊. 基于子图特征的科学家合作网络链路预测. 大连民族大学学报. 2020(01): 51-63 . 百度学术
9. 张尚田,陈光,邱天. 基于融合特征的LSTM评分预测. 计算机与现代化. 2020(03): 49-53+59 . 百度学术
10. 顾秋阳,琚春华,吴功兴. 基于子图演化与改进蚁群优化算法的社交网络链路预测方法. 通信学报. 2020(12): 21-35 . 百度学术
11. 李琦,王智强,梁吉业. 基于PU学习的链接预测方法. 模式识别与人工智能. 2019(09): 793-799 . 百度学术
其他类型引用(18)
计量
- 文章访问数: 1385
- HTML全文浏览量: 2
- PDF下载量: 554
- 被引次数: 29