• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于自适应人工鱼群FCM的异常检测算法

席亮, 王勇, 张凤斌

席亮, 王勇, 张凤斌. 基于自适应人工鱼群FCM的异常检测算法[J]. 计算机研究与发展, 2019, 56(5): 1048-1059. DOI: 10.7544/issn1000-1239.2019.20180099
引用本文: 席亮, 王勇, 张凤斌. 基于自适应人工鱼群FCM的异常检测算法[J]. 计算机研究与发展, 2019, 56(5): 1048-1059. DOI: 10.7544/issn1000-1239.2019.20180099
Xi Liang, Wang Yong, Zhang Fengbin. Anomaly Detection Algorithm Based on FCM with Adaptive Artificial Fish-Swarm[J]. Journal of Computer Research and Development, 2019, 56(5): 1048-1059. DOI: 10.7544/issn1000-1239.2019.20180099
Citation: Xi Liang, Wang Yong, Zhang Fengbin. Anomaly Detection Algorithm Based on FCM with Adaptive Artificial Fish-Swarm[J]. Journal of Computer Research and Development, 2019, 56(5): 1048-1059. DOI: 10.7544/issn1000-1239.2019.20180099
席亮, 王勇, 张凤斌. 基于自适应人工鱼群FCM的异常检测算法[J]. 计算机研究与发展, 2019, 56(5): 1048-1059. CSTR: 32373.14.issn1000-1239.2019.20180099
引用本文: 席亮, 王勇, 张凤斌. 基于自适应人工鱼群FCM的异常检测算法[J]. 计算机研究与发展, 2019, 56(5): 1048-1059. CSTR: 32373.14.issn1000-1239.2019.20180099
Xi Liang, Wang Yong, Zhang Fengbin. Anomaly Detection Algorithm Based on FCM with Adaptive Artificial Fish-Swarm[J]. Journal of Computer Research and Development, 2019, 56(5): 1048-1059. CSTR: 32373.14.issn1000-1239.2019.20180099
Citation: Xi Liang, Wang Yong, Zhang Fengbin. Anomaly Detection Algorithm Based on FCM with Adaptive Artificial Fish-Swarm[J]. Journal of Computer Research and Development, 2019, 56(5): 1048-1059. CSTR: 32373.14.issn1000-1239.2019.20180099

基于自适应人工鱼群FCM的异常检测算法

基金项目: 国家自然科学基金项目(61172168);黑龙江省自然科学基金项目(F2018019);黑龙江省普通本科高等学校青年创新人才培养计划(UNPYSCT-2015048)
详细信息
  • 中图分类号: TP393.08

Anomaly Detection Algorithm Based on FCM with Adaptive Artificial Fish-Swarm

  • 摘要: 异常检测算法在诸多领域都发挥着重要的作用.基于模糊C-均值(fuzzy C-means, FCM)的异常检测是其代表方法之一.FCM对初始值的选取很敏感,而且容易陷入局部极值.基于此的异常检测算法检测效果也不甚理想.因此,引入具有较强全局搜索能力的人工鱼群算法,对其加入自适应机制,自适应调整Visual取值范围,从而提高AFSA局部和全局寻优能力,减少算法迭代的次数.然后将其应用于FCM中,利用自适应人工鱼群算法得到的最优解进行FCM聚类分析,从而解决以上FCM存在的种种问题.最后,设计基于自适应人工鱼群FCM的异常检测算法,充分利用自适应人工鱼群的优势来提高异常检测算法的检测性能.实验表明:该算法在提高对数据的检测效率的基础上,检测性能也表现出了很好的水平,为解决异常检测模型中的检测率和虚警率相关问题提供了一种有效解决方案.
    Abstract: Anomaly detection algorithm has played a key role in many areas, and the anomaly detection based on fuzzy C-means (FCM) is one of its representative methods. Owing to the limits of FCM such as the local minimum and the sensitiveness of the selection of initial value, there is still a large room to improve the conditional FCM-based anomaly detection method. In this paper, we firstly propose an adaptive artificial fish-swarm algorithm (AAFSA), by introducing an adaptive mechanism implemented by adjusting the value range of parameter “Visual” to the artificial fish-swarm algorithm which has a strong global search ability, to improve local and global optimization abilities and reduce the times of iterations. The limits of FCM mentioned above therefore can be solved by using the optimal solution obtained from AAFSA. Then, an anomaly detection algorithm based on AAFSA-FCM is designed by making full use of advantages of AAFSA to enhance the detection performances of anomaly detection algorithm. The experimental results show that the algorithm improves the detection performance both efficiently and effectively, which provides an effective solution for solving the problems of detection rate and false alarm rate in anomaly detection models, and state-of-the-art results achieve the purpose of reducing computational costs.
  • 计算机存储系统承载数据,是信息平台的核心基础设施. 近年来,全球数据规模爆发式增长,计算机存储系统面临着高速数据访问、海量数据存储以及存储服务质量保障的挑战. 同时,由于新型硬件(如NVMe SSD、持久内存、异构加速设备等)的发展与成熟,存储系统技术研究面临着诸多新的机遇.

    基于上述背景,为促进存储领域的技术交流,《计算机研究与发展》推出了本期存储专题. 本期专题收录了6篇论文,分别展示了新硬件环境下存储系统设计和大规模数据存储服务质量保障等存储领域关注热点的研究现状和最新研究成果,希望能为从事相关工作的读者提供借鉴和帮助.

    周小晖等作者的论文“基于融合学习的无监督多维时间序列异常检测”针对多维时间序列异常检测效果差的问题,提出了一种基于融合学习的无监督多维时间序列异常检测方法. 该方法同时对多维时间序列的数据局部特征和数据全局特征进行建模,并基于重构误差检测异常,提升了异常检测效果.

    刘扬等作者的论文“ZB+ -tree:一种 ZNS SSD 感知的新型索引结构”针对传统的 B+ -tree 索引结构不适配 ZNS SSD 的问题,提出了ZNS SSD感知的ZB+ -tree索引结构. 该索引结构通过将索引节点在常规Zone和顺序Zone分散存储,实现了运行时间和空间利用率指标的提升.

    屠要峰等作者的论文“UStore:面向新型硬件的统一存储系统”为适配 NVMe SSD、持久内存、异构加速设备等新型硬件的特性,提出了一种兼容多种存储介质的统一存储系统 UStore. 该存储系统包括与物理存储介质形态解耦的元数据设计、高效的数据管理机制和更新策略,充分发挥了存储硬件的特性和性能.

    杨勇鹏等作者的论文“一种 wandering B+ tree 问题解决方法”针对日志结构存储系统中B+ tree树结点异地更新会导致树结构递归更新的问题,提出 IBT B+ tree 的解决方法. 该方法将树结点逻辑索引和物理地址均存放在树结构中,同时引入 dirty 链表设计和非递归更新的 IBT B+ tree 下刷算法,实现在不引入额外开销的条件下解决wandering B+ tree的问题.

    文宇鸿等作者的论文“多租户固态盘服务质量保障技术综述”深入分析了多租户固态盘服务质量保障面临的性能干扰、性能不公平及总体性能损失问题,分类介绍了以保障性能隔离、性能公平、优化总体性能为目标的研究工作及技术演进方向,总结了多租户固态盘服务质量保障技术的研究现状并对未来研究方向进行了展望.

    胡浩等作者的论文“新型内存硬件环境中的事务管理系统综述”全面总结了新型硬件环境下的事务管理系统,阐述了当前基于新型硬件事务管理系统的技术路线,重点剖析了硬件事务内存和非易失性存储硬件下的事务管理系统的优势和不足,指明了新型硬件环境中事务管理系统潜在的发展方向以及面临的挑战.

    本专题所录用的6篇论文中,1篇论文重点关注云系统中多维时间序列的故障检测,3篇论文重点关注新硬件环境下的存储系统设计及索引结构设计,2篇论文对基于新型硬件的事务管理系统和多租户固态盘服务质量保障技术进行了综述. 由于专题篇幅有限等原因,本专题无法全面覆盖存储领域各方面的最新研究进展,不当之处请同行学者批评指正! 感谢各位作者、审稿专家和编辑部的全力支持和辛勤付出!

    舒继武 (清华大学)

    王意洁 (国防科技大学)

    2023年2月

计量
  • 文章访问数:  964
  • HTML全文浏览量:  5
  • PDF下载量:  368
  • 被引次数: 0
出版历程
  • 发布日期:  2019-04-30

目录

    /

    返回文章
    返回