Energy-Efficiency Query Optimization for Green Datacenters
-
摘要: 降低能耗开销、建设绿色数据中心,已经成为目前大规模数据中心的重要需求.在绿色数据中心,如何使数据库系统在满足性能需求的前提下尽量地节约能耗,即如何提高数据库系统的能耗有效性,是目前研究的重点.数据库系统中的能耗有效性旨在使用更少的电能来提供相同的服务.能耗有效性越高,说明数据库系统可以用更少的能耗就能够响应同样数量的操作,换句话说,可以用更少的能耗达到同样的性能.据此提出了一种面向绿色数据中心的能耗有效查询优化方法.该方法首先利用回归分析建立操作符层的功耗预测模型,从而可以准确地预测给定查询在执行过程中的平均功耗.接着,在PostgreSQL查询优化器中扩充了结合预测能耗成本和时间成本的新的查询执行代价计算模型,并引入性能退化度因子调节性能和能耗的权重.最后构建了数据库系统能耗测试平台,在PostgreSQL上基于TPC-H和TPC-C基准测试进行了实验.结果表明:所提出的功耗预测模型比已有方法准确度更高.同时,提出的性能退化度因子为数据库系统提供了性能和能耗之间的灵活折中方案,并且通过设置适当的性能退化度因子,可以实现比原始PostgreSQL更高的能耗有效性.Abstract: Reducing energy consumption and building green datacenters has been one of the major needs of modern large-scale datacenters. In green datacenters, a key research issue is how to lower the energy consumption of database systems while keeping stable performance. This issue is called energy efficiency, and has become a new research frontier recently. Energy efficiency of database systems is defined as using little energy to accomplish as many operations as possible. High energy efficiency means that database systems can use less energy while processing a fixed number of operations. In other words, it uses less energy but achieves the same performance. In this paper, we propose a method for energy-efficient query optimization. First, an operator-level power model is established based on the regression analysis method, which can accurately predict average power consumption during query execution for a given query. Next, a new cost model is proposed for query optimizer, which considers both energy and performance aspects. The new cost model uses a new factor to obtain a better tradeoff between performance and energy costs. A testbed is built for measuring energy consumption of database systems, and the TPC-H and TPC-C benchmarks are used to evaluate the performance of our proposal. The results show that the proposed power model achieves higher precision than existing methods. In addition, the proposed performance-degrade factor can provide flexible trade-offs between performance and energy. Moreover, by setting up an appropriate performance-degrade factor, better energy efficiency can be achieved than the original PostgreSQL.
-
Keywords:
- green datacenter /
- energy efficiency /
- query optimization /
- cost model /
- power model
-
-
期刊类型引用(30)
1. 马超红,郝新丽,孟小峰,张旭康. 机器学习赋能的多维数据查询处理研究综述. 计算机学报. 2025(01): 100-123 . 百度学术
2. 姜璐璐,高锦涛. 面向机器学习的数据库参数调优技术综述. 计算机工程与应用. 2024(03): 1-16 . 百度学术
3. 刘帅,乔颖,罗雄飞,赵怡婧,王宏安. 时序数据库关键技术综述. 计算机研究与发展. 2024(03): 614-638 . 本站查看
4. 赖思超,吴小莹,彭煜玮,彭智勇. 数据库索引调优技术综述. 计算机研究与发展. 2024(04): 929-954 . 本站查看
5. 朱镕佳,杨宇轩,李振东,陈硕,唐朝阳,唐晓雨. 基于树莓派的智能零售系统设计. 现代信息科技. 2024(19): 189-192+198 . 百度学术
6. 蔡盼,张少敏,刘沛然,孙路明,李翠平,陈红. 智能数据库学习型索引研究综述. 计算机学报. 2023(01): 51-69 . 百度学术
7. 曹蓉,鲍亮,崔江涛,李辉,周恒. 数据库系统参数调优方法综述. 计算机研究与发展. 2023(03): 635-653 . 本站查看
8. 杨荣利,王伟,杨栋,周东阳. 基于两因素模糊时间序列的一次风机指标预测. 电子设计工程. 2023(07): 91-94+99 . 百度学术
9. 唐楚哲 ,王肇国 ,陈海波 . 机器学习方法赋能系统软件:挑战、实践与展望. 计算机研究与发展. 2023(05): 964-973 . 本站查看
10. 张政,段怡,高志峰,张欢. 机器学习在手术中液体治疗的应用. 中国数字医学. 2023(07): 81-85 . 百度学术
11. 杜维柱,张晓华,卢毅,王书渊,沈彦伶. 基于机器学习与数值预报技术的电网短期临近气象预警模型设计. 电子设计工程. 2023(19): 99-103 . 百度学术
12. 曹卫东,金超. 基于birch聚类的可更新机器学习索引模型. 计算机工程与设计. 2023(11): 3328-3334 . 百度学术
13. 王鹏. “智慧工会”实现路径. 科技资讯. 2022(02): 10-12 . 百度学术
14. 张静,农昌瑞,张海兵,张亚周. 基于深度学习的发动机叶片故障检测技术. 航空发动机. 2022(01): 68-75 . 百度学术
15. 孟小峰,余艳. 在跨学科交叉融合中深发展社会计算与社会智能. 计算机科学. 2022(04): 3-8 . 百度学术
16. 欧群雍,谭同德,冯学晓. 基于机器学习的软件定义网络数据流子序列匹配算法. 国外电子测量技术. 2022(04): 70-76 . 百度学术
17. 杜清华,张凯. 一种高效的跨平台工作流优化方法. 计算机工程. 2022(07): 13-21+28 . 百度学术
18. 姬莉霞,赵耀,马郑祎,赵润哲,张晗. 基于iForest-BiLSTM-Attention的数据库负载预测方法. 郑州大学学报(理学版). 2022(06): 66-73 . 百度学术
19. 张洲,金培权,谢希科. 学习索引:现状与研究展望. 软件学报. 2021(04): 1129-1150 . 百度学术
20. 潘璇,徐思涵,蔡祥睿,温延龙,袁晓洁. 基于深度学习的数据库自然语言接口综述. 计算机研究与发展. 2021(09): 1925-1950 . 本站查看
21. 蒙芳,翟建丽. 学习行为大数据可视化的网络数据库学习仿真. 计算机仿真. 2021(09): 216-220 . 百度学术
22. 陈镭. 基于机器学习的数据库系统自动调参研究. 软件导刊. 2021(11): 148-151 . 百度学术
23. 崔栋,温巧燕,张华,王华伟. QML:一种混合空间索引结构. 通信学报. 2021(12): 1-16 . 百度学术
24. 陶镇威. 基于机器学习的Oracle数据库故障预测技术探索. 现代工业经济和信息化. 2020(02): 70-71 . 百度学术
25. 桂树强,周实,张家季,耿欣. 基于BIM的轨道交通项目管理框架体系研究与实践. 人民长江. 2020(03): 147-152 . 百度学术
26. 宋雨萌,谷峪,李芳芳,于戈. 人工智能赋能的查询处理与优化新技术研究综述. 计算机科学与探索. 2020(07): 1081-1103 . 百度学术
27. 陈珂锐,孟小峰. 机器学习的可解释性. 计算机研究与发展. 2020(09): 1971-1986 . 本站查看
28. 唐吉深,覃少华. 大型数据库重复记录检测与优化研究. 现代电子技术. 2020(17): 77-81 . 百度学术
29. 蔡洪浩,罗应华,张荣鑫,杨喻淳. 基于机器学习的智能光电对抗系统. 电子技术与软件工程. 2020(13): 79-80 . 百度学术
30. 陶姿邑. 基于深度学习的数据库重复记录检测算法. 微型电脑应用. 2020(12): 174-176 . 百度学术
其他类型引用(33)
计量
- 文章访问数: 1164
- HTML全文浏览量: 8
- PDF下载量: 426
- 被引次数: 63