• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

LBSN中基于社区联合聚类的协同推荐方法

龚卫华, 金蓉, 裴小兵, 梅建萍

龚卫华, 金蓉, 裴小兵, 梅建萍. LBSN中基于社区联合聚类的协同推荐方法[J]. 计算机研究与发展, 2019, 56(11): 2506-2517. DOI: 10.7544/issn1000-1239.2019.20180673
引用本文: 龚卫华, 金蓉, 裴小兵, 梅建萍. LBSN中基于社区联合聚类的协同推荐方法[J]. 计算机研究与发展, 2019, 56(11): 2506-2517. DOI: 10.7544/issn1000-1239.2019.20180673
Gong Weihua, Jin Rong, Pei Xiaobing, Mei Jianping. Collaborative Recommendation Method Based on Community Co-Clustering in Location Based Social Networks[J]. Journal of Computer Research and Development, 2019, 56(11): 2506-2517. DOI: 10.7544/issn1000-1239.2019.20180673
Citation: Gong Weihua, Jin Rong, Pei Xiaobing, Mei Jianping. Collaborative Recommendation Method Based on Community Co-Clustering in Location Based Social Networks[J]. Journal of Computer Research and Development, 2019, 56(11): 2506-2517. DOI: 10.7544/issn1000-1239.2019.20180673
龚卫华, 金蓉, 裴小兵, 梅建萍. LBSN中基于社区联合聚类的协同推荐方法[J]. 计算机研究与发展, 2019, 56(11): 2506-2517. CSTR: 32373.14.issn1000-1239.2019.20180673
引用本文: 龚卫华, 金蓉, 裴小兵, 梅建萍. LBSN中基于社区联合聚类的协同推荐方法[J]. 计算机研究与发展, 2019, 56(11): 2506-2517. CSTR: 32373.14.issn1000-1239.2019.20180673
Gong Weihua, Jin Rong, Pei Xiaobing, Mei Jianping. Collaborative Recommendation Method Based on Community Co-Clustering in Location Based Social Networks[J]. Journal of Computer Research and Development, 2019, 56(11): 2506-2517. CSTR: 32373.14.issn1000-1239.2019.20180673
Citation: Gong Weihua, Jin Rong, Pei Xiaobing, Mei Jianping. Collaborative Recommendation Method Based on Community Co-Clustering in Location Based Social Networks[J]. Journal of Computer Research and Development, 2019, 56(11): 2506-2517. CSTR: 32373.14.issn1000-1239.2019.20180673

LBSN中基于社区联合聚类的协同推荐方法

基金项目: 国家自然科学基金项目(61502420);浙江省自然科学基金项目(LY13F020026,LY16F020032);中国博士后科学基金项目(2015M581957);浙江省教育厅科研项目(Y201840116)
详细信息
  • 中图分类号: TP181

Collaborative Recommendation Method Based on Community Co-Clustering in Location Based Social Networks

  • 摘要: 近年来,异质网络中的社区发现逐渐成为人们关注的研究热点,然而现有大多数非重叠或重叠的社区发现方法都局限于考虑单一类型的网络结构,而无法适用于包含多模实体及其多维关系的异质网络,基于位置的社交网络(location based social network, LBSN)作为最近兴起的一种新型异质网络,如何有效发现其含有多维关系的复杂社区结构对现有研究来说是一个挑战性的难题.为此,提出了一种融合用户与位置实体及其多维关系的社区发现方法MRNMF(multi-relational nonnegative matrix factorization),该方法通过建立基于非负矩阵分解的联合聚类目标函数,并考虑融入用户社交关系、用户-位置签到关系以及兴趣点特征等多维度的影响因素,能同时获得紧密关联的用户模糊社区与兴趣点聚簇结构,以有效缓解推荐中的数据稀疏问题.在2种真实LBSN数据集上的实验结果表明,所提出的MRNMF方法同时在兴趣点与朋友这双重推荐上比其他传统方法具有更优越的推荐性能.
    Abstract: In recent years, community discovery in heterogeneous networks has gradually become a research hotspot. However, most of the existing methods for discovering non-overlapping or overlapping communities only take one single type of information network into account, and cannot be applied to heterogeneous networks containing multi-mode entities and their multi-dimensional relationships. Presently as a new emerging heterogeneous network, location based social network (LBSN) is attracting more and more attention from social network field. How to effectively discover the hidden complex community structures with multi-dimensional relationships in LBSN, is a very challenging problem for current researchers. Therefore, a community discovery method called multi-relational nonnegative matrix factorization (MRNMF) is proposed that integrates both user and location entities and fuse their multidimensional relationships in LBSN. This method establishes a joint clustering objective function based on nonnegative matrix factorization (NMF), and considers the effect of multi-dimensional factors such as user social relations, user-location check-ins and features of points of interests (POIs). The merits are that not only obtaining accurate user fuzzy communities, but also getting closely related clusters of POIs, which can effectively alleviate data sparse problem in recommendations. The experimental results on two real LBSN datasets show that the proposed method MRNMF has better recommendation performance than other traditional methods in the dual recommendations for POIs and users.
  • 期刊类型引用(11)

    1. 肖宇庭,吕晓琪,谷宇,刘传强. 基于拆分残差网络的糖尿病视网膜病变分类. 广西师范大学学报(自然科学版). 2024(01): 91-101 . 百度学术
    2. 吕德珍,赵玉,苗素琴. 基于分布式多节点医疗管理系统进程设计. 计算机与数字工程. 2024(02): 382-387 . 百度学术
    3. 盛文娟,赖振谱,杨宁,Peng Gangding. 基于改进AdaBoost算法的可调谐F-P滤波器温漂补偿方法. 光学学报. 2023(03): 48-56 . 百度学术
    4. 傅懋钟,胡海洋,李忠金. 面向GPU集群的动态资源调度方法. 计算机研究与发展. 2023(06): 1308-1321 . 本站查看
    5. 杨小琴,朱玉全. 基于距离限定优化的多姿态人脸图像智能识别. 计算机仿真. 2022(01): 200-203+282 . 百度学术
    6. 王昕. 梯度下降及优化算法研究综述. 电脑知识与技术. 2022(08): 71-73 . 百度学术
    7. 赵永亮,于倩,邓博,韩丽君,高红梅. 基于博弈论及机器学习的最优化算法设计与仿真. 电子设计工程. 2022(13): 23-27 . 百度学术
    8. 李晓锋,燕少飞,吴宸. 移动终端操作系统应用程序恶意检测系统技术研究. 电子技术与软件工程. 2022(17): 75-79 . 百度学术
    9. 蒋平. 基于卷积神经网络的图像精度深度优化. 淮阴工学院学报. 2021(03): 30-34 . 百度学术
    10. 杨国葳,李宏坤,张明亮,黄刚劲. 基于一维深度卷积自动编码器的刀具状态监测方法. 振动与冲击. 2021(21): 223-233+274 . 百度学术
    11. 郑雯,沈琪浩,任佳. 基于Improved DR-Net算法的糖尿病视网膜病变识别与分级. 光学学报. 2021(22): 72-83 . 百度学术

    其他类型引用(24)

计量
  • 文章访问数:  1325
  • HTML全文浏览量:  4
  • PDF下载量:  436
  • 被引次数: 35
出版历程
  • 发布日期:  2019-10-31

目录

    /

    返回文章
    返回