• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

智能芯片的评述和展望

韩栋, 周聖元, 支天, 陈云霁, 陈天石

韩栋, 周聖元, 支天, 陈云霁, 陈天石. 智能芯片的评述和展望[J]. 计算机研究与发展, 2019, 56(1): 7-22. DOI: 10.7544/issn1000-1239.2019.20180693
引用本文: 韩栋, 周聖元, 支天, 陈云霁, 陈天石. 智能芯片的评述和展望[J]. 计算机研究与发展, 2019, 56(1): 7-22. DOI: 10.7544/issn1000-1239.2019.20180693
Han Dong, Zhou Shengyuan, Zhi Tian, Chen Yunji, Chen Tianshi. A Survey of Artificial Intelligence Chip[J]. Journal of Computer Research and Development, 2019, 56(1): 7-22. DOI: 10.7544/issn1000-1239.2019.20180693
Citation: Han Dong, Zhou Shengyuan, Zhi Tian, Chen Yunji, Chen Tianshi. A Survey of Artificial Intelligence Chip[J]. Journal of Computer Research and Development, 2019, 56(1): 7-22. DOI: 10.7544/issn1000-1239.2019.20180693
韩栋, 周聖元, 支天, 陈云霁, 陈天石. 智能芯片的评述和展望[J]. 计算机研究与发展, 2019, 56(1): 7-22. CSTR: 32373.14.issn1000-1239.2019.20180693
引用本文: 韩栋, 周聖元, 支天, 陈云霁, 陈天石. 智能芯片的评述和展望[J]. 计算机研究与发展, 2019, 56(1): 7-22. CSTR: 32373.14.issn1000-1239.2019.20180693
Han Dong, Zhou Shengyuan, Zhi Tian, Chen Yunji, Chen Tianshi. A Survey of Artificial Intelligence Chip[J]. Journal of Computer Research and Development, 2019, 56(1): 7-22. CSTR: 32373.14.issn1000-1239.2019.20180693
Citation: Han Dong, Zhou Shengyuan, Zhi Tian, Chen Yunji, Chen Tianshi. A Survey of Artificial Intelligence Chip[J]. Journal of Computer Research and Development, 2019, 56(1): 7-22. CSTR: 32373.14.issn1000-1239.2019.20180693

智能芯片的评述和展望

基金项目: 国家重点研发计划项目(2017YFA0700902,2017YFB1003101);国家自然科学基金项目(61472396,61432016, 61473275, 61522211, 61532016, 61521092, 61502446, 61672491, 61602441, 61602446,61732002,61702478);国家“九七三”重点基础研究发展计划基金项目(2015CB358800);国家科技重大专项基金项目(2018ZX01031102);中国科学院战略性先导科技专项(B类)(XDB32050200)
详细信息
  • 中图分类号: TP316

A Survey of Artificial Intelligence Chip

  • 摘要: 近年来,人工智能技术在许多商业领域获得了广泛应用,并且随着世界各地的科研人员和科研公司的重视和投入,人工智能技术在传统语音识别、图像识别、搜索/推荐引擎等领域证明了其不可取代的价值.但与此同时,人工智能技术的运算量也急剧扩增,给硬件设备的算力提出了巨大的挑战.从人工智能的基础算法以及其应用算法着手,描述了其运算方式及其运算特性.然后,介绍了近期人工智能芯片的发展方向,对目前智能芯片的主要架构进行了介绍和分析.而后,着重介绍了DianNao系列处理器的研究成果.该系列的处理器为智能芯片领域最新最先进的研究成果,其结构和设计分别面向不同的技术特征而提出,包括深度学习算法、大规模的深度学习算法、机器学习算法、用于处理二维图像的深度学习算法以及稀疏深度学习算法等.此外,还提出并设计了完备且高效的Cambricon指令集结构.最后,对人工神经网络技术的发展方向从多个角度进行了分析,包括网络结构、运算特性和硬件器件等,并基于此对未来工作可能的发展方向进行了预估和展望.
    Abstract: In recent years, artificial intelligence (AI)technologies have been widely used in many commercial fields. With the attention and investment of scientific researchers and research companies around the world, AI technologies have been proved their irreplaceable value in traditional speech recognition, image recognition, search/recommendation engine and other fields. However, at the same time, the amount of computation of AI technologies increases dramatically, which poses a huge challenge to the computing power of hardware equipments. At first, we describe the basic algorithms of AI technologies and their application algorithms in this paper, including their operation modes and operation characteristics. Then, we introduce the development directions of AI chips in recent years, and analyze the main architectures of AI chips. Furthermore, we emphatically introduce the researches of DianNao series processors. This series of processors are the latest and most advanced researches in the field of AI chips. Their architectures and designs are proposed for different technical features, including deep learning algorithms, large-scale deep learning algorithms, machine learning algorithms, deep learning algorithms for processing two-dimensional images and sparse deep learning algorithms. In addition, a complete and efficient instruction architecture(ISA) for deep learning algorithms, Cambricon, is proposed. Finally, we analyze the development directions of artificial neural network technologies from various angles, including network structures, operation characteristics and hardware devices. Based on the above, we predict and prospect the possible development directions of future work.
  • 期刊类型引用(5)

    1. 李萍,王丽丽. 国内多模态技术的研究现状与发展趋势:基于CiteSpace的可视化分析. 智能计算机与应用. 2025(01): 194-202 . 百度学术
    2. 马辉,王瑞琴,杨帅. 一种渐进式增长条件生成对抗网络模型. 电信科学. 2023(06): 105-113 . 百度学术
    3. 涂荣成,毛先领,孔伟杰,蔡成飞,赵文哲,王红法,黄河燕. 基于CLIP生成多事件表示的视频文本检索方法. 计算机研究与发展. 2023(09): 2169-2179 . 本站查看
    4. 孔珊珊. 基于深度学习的机器人舞蹈自动生成研究. 自动化与仪器仪表. 2022(04): 237-240 . 百度学术
    5. 李媛,陈昭炯,叶东毅. 基于参考图语义匹配的花卉线稿工笔效果上色算法. 计算机研究与发展. 2022(06): 1271-1285 . 本站查看

    其他类型引用(3)

计量
  • 文章访问数:  3907
  • HTML全文浏览量:  26
  • PDF下载量:  2136
  • 被引次数: 8
出版历程
  • 发布日期:  2018-12-31

目录

    /

    返回文章
    返回