• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于深度学习的数字几何处理与分析技术研究进展

夏清, 李帅, 郝爱民, 赵沁平

夏清, 李帅, 郝爱民, 赵沁平. 基于深度学习的数字几何处理与分析技术研究进展[J]. 计算机研究与发展, 2019, 56(1): 155-182. DOI: 10.7544/issn1000-1239.2019.20180709
引用本文: 夏清, 李帅, 郝爱民, 赵沁平. 基于深度学习的数字几何处理与分析技术研究进展[J]. 计算机研究与发展, 2019, 56(1): 155-182. DOI: 10.7544/issn1000-1239.2019.20180709
Xia Qing, Li Shuai, Hao Aimin, Zhao Qinping. Deep Learning for Digital Geometry Processing and Analysis: A Review[J]. Journal of Computer Research and Development, 2019, 56(1): 155-182. DOI: 10.7544/issn1000-1239.2019.20180709
Citation: Xia Qing, Li Shuai, Hao Aimin, Zhao Qinping. Deep Learning for Digital Geometry Processing and Analysis: A Review[J]. Journal of Computer Research and Development, 2019, 56(1): 155-182. DOI: 10.7544/issn1000-1239.2019.20180709
夏清, 李帅, 郝爱民, 赵沁平. 基于深度学习的数字几何处理与分析技术研究进展[J]. 计算机研究与发展, 2019, 56(1): 155-182. CSTR: 32373.14.issn1000-1239.2019.20180709
引用本文: 夏清, 李帅, 郝爱民, 赵沁平. 基于深度学习的数字几何处理与分析技术研究进展[J]. 计算机研究与发展, 2019, 56(1): 155-182. CSTR: 32373.14.issn1000-1239.2019.20180709
Xia Qing, Li Shuai, Hao Aimin, Zhao Qinping. Deep Learning for Digital Geometry Processing and Analysis: A Review[J]. Journal of Computer Research and Development, 2019, 56(1): 155-182. CSTR: 32373.14.issn1000-1239.2019.20180709
Citation: Xia Qing, Li Shuai, Hao Aimin, Zhao Qinping. Deep Learning for Digital Geometry Processing and Analysis: A Review[J]. Journal of Computer Research and Development, 2019, 56(1): 155-182. CSTR: 32373.14.issn1000-1239.2019.20180709

基于深度学习的数字几何处理与分析技术研究进展

详细信息
  • 中图分类号: TP391

Deep Learning for Digital Geometry Processing and Analysis: A Review

  • 摘要: 随着各种硬件传感器以及重建技术的快速发展,数字几何模型成为继音频、图像、视频之后的第4代数字媒体,并在多个领域得到广泛应用.传统的数字几何分析和处理方法主要建立在手工定义的模型特征之上,这类方法只对特定问题或者在特定条件下才有效.而深度学习,尤其是神经网络模型,在自然语言处理和图像处理方面的成功,展示了它作为数据特征提取工具的强大能力,因此越来越多地被用在数字几何处理领域.对近年来基于深度学习的数字几何处理与分析技术进行了综述,重点分析了模型匹配与检索、模型分类与分割、模型生成、模型修复与重建以及模型变形与编辑中的相关技术国内外最新研究进展,并指出了存在的主要问题和发展方向.
    Abstract: With the rapid development of various hardware sensors and reconstruction technologies, digital geometric models have become the fourth generation of digital multimedia after audio, image and video, and have been widely used in many fields. Traditional digital geometry processing and analysis are mainly based on manually defined features that can only be valid for specific problems or under specific conditions. The deep learning, especially the neural network model, in the success of natural language processing and image processing demonstrates its powerful ability as a feature extraction tool for data analysis, and is therefore gradually used in the field of digital geometry processing. In this paper, we review the works of digital geometry processing and analysis based on deep learning in recent years, carefully analyze the research progress of shape matching and retrieval, shape classification and segmentation, shape generation, shape completion and reconstruction and shape deformation and editing, and also point out some existing problems and a few possible directions of future works.
  • 期刊类型引用(17)

    1. 袁子淇,孙庆赟,周号益,朱祖坤,李建欣. MNDetector:基于多层网络的异常访问检测方法. 计算机研究与发展. 2025(03): 765-778 . 本站查看
    2. 陈佳乐,陈旭,景永俊,王叔洋. 图神经网络在异常检测中的应用综述. 计算机工程与应用. 2024(13): 51-65 . 百度学术
    3. 林馥,李明康,罗学雄,张书豪,张越,王梓桐. 基于异常感知的变分图自编码器的图级异常检测算法. 计算机研究与发展. 2024(08): 1968-1981 . 本站查看
    4. 孔翎超,刘国柱. 离群点检测算法综述. 计算机科学. 2024(08): 20-33 . 百度学术
    5. 王泽鹏 ,马超 ,张壮壮 ,吴黎兵 ,石小川 . 动态决策驱动的工控网络数据要素威胁检测方法. 计算机研究与发展. 2024(10): 2404-2416 . 本站查看
    6. 叶苗,程锦,黄源,蒋秋香,王勇. 面向WSN异常节点检测的融合重构机制与对比学习方法. 通信学报. 2024(09): 153-169 . 百度学术
    7. 王芳. 基于深度学习的网络传输数据异常识别方法. 现代电子技术. 2023(06): 62-66 . 百度学术
    8. 江铃燚,郑艺峰,陈澈,李国和,张文杰. 有监督深度学习的优化方法研究综述. 中国图象图形学报. 2023(04): 963-983 . 百度学术
    9. 富坤,刘赢华,郝玉涵,孙明磊. 基于图模块度聚类的异常检测算法. 计算机应用研究. 2023(06): 1721-1727 . 百度学术
    10. 曹成顺. 基于深度神经网络的输电线路异常自动辨识方法. 信息与电脑(理论版). 2023(15): 165-167 . 百度学术
    11. 冯健,赵宇鹏,刘天. 融合双重自监督信号的图异常检测. 科学技术与工程. 2023(35): 15142-15147 . 百度学术
    12. 王炳泉. 基于SVM的网络流量异常检测算法. 信息与电脑(理论版). 2023(22): 245-247 . 百度学术
    13. 唐立,郝鹏,任沛阁,张祖耀,何翔,张学军. 基于改进孤立森林算法的无人机异常行为检测. 航空学报. 2022(08): 584-593 . 百度学术
    14. 陈益芳,宣羿,樊立波,孙智卿,屠永伟,张亦涵,蔡乾晨. 基于机器学习的电网威胁检测算法模型和大数据平台设计. 电力大数据. 2022(04): 34-41 . 百度学术
    15. 刘华玲,刘雅欣,许珺怡,陈尚辉,乔梁. 图异常检测在金融反欺诈中的应用研究进展. 计算机工程与应用. 2022(22): 41-53 . 百度学术
    16. 李净. 国际视野下治理虚假新闻的技术手段及相关模型. 中国传媒科技. 2021(08): 17-21 . 百度学术
    17. 雷瑜,郑丹,曾繁如,樊志伟,宁黎,邓立. 四川耕地“非粮化”监测中的智能监测方法. 资源与人居环境. 2021(12): 47-51 . 百度学术

    其他类型引用(34)

计量
  • 文章访问数:  2191
  • HTML全文浏览量:  9
  • PDF下载量:  1074
  • 被引次数: 51
出版历程
  • 发布日期:  2018-12-31

目录

    /

    返回文章
    返回