Research Situation and Prospects of Operating System Virtualization
-
摘要: 容器技术作为一种轻量级虚拟化技术,近年来不仅广泛应用于云计算平台和数据中心的资源管理、系统运维和软件部署中,也逐步应用于包括边缘计算、物联网等在内的新领域,表现出了良好的发展态势和应用前景.在此背景下,操作系统虚拟化作为容器的核心技术引起了广泛的关注.操作系统虚拟化允许多个应用在共享同一主机操作系统内核的环境下隔离运行,具有启动快速、部署方便、资源占用少、运行效率高等优点,但是也存在隔离性较弱等不足之处,后者也成为了虚拟化领域的研究热点.首先介绍操作系统虚拟化的历史背景和技术架构,并与传统虚拟化技术对比总结操作系统虚拟化技术的特点;随后分别从容器实例层、容器管理层和内核资源层梳理和分析操作系统虚拟化当前研究现状;最后阐述了操作系统虚拟化领域的技术挑战和研究展望.Abstract: As a kind of lightweight virtualization technology, container has not only been widely used in resource management and DevOps of cloud computing platform and data center in recent years, but also gradually applied to some new fields such as edge computing and Internet of things. Container has shown a good development trend and application prospect. So, operating system virtualization as a core technology of container has received widespread attention in both industry and academia. Operating system virtualization allows multiple applications to run in a set of isolated runtime environment by sharing the same host operating system kernel. It has the advantages of fast startup, convenient deployment, low resource consumption, high running efficiency. However, there are also deficiencies such as weak isolation. And the deficiency has become a research hotspot in the field of virtualization. In this survey, we first introduce the technical architecture of operating system virtualization and compare it with traditional virtualization technology to summarize its characteristics. Then we analyze the current research status of operating system virtualization from container instance layer, container management layer and kernel resource layer. Finally, the paper lays out several challenges and research prospects of operating system virtualization.
-
Keywords:
- operating system /
- container /
- virtualization /
- container management /
- resource isolation
-
-
期刊类型引用(5)
1. 宋昊,毛宽民,朱洲. 基于GAANET的立体匹配算法. 计算机科学. 2024(04): 229-235 . 百度学术
2. 郑晗,王宁,马新柱,张宏,王智慧,李豪杰. 基于邻域一致性的点云场景流传播更新方法. 计算机研究与发展. 2023(02): 426-434 . 本站查看
3. 党宏社,许怀彪,张选德. 融合结构信息的深度学习立体匹配算法. 图学学报. 2023(05): 899-906 . 百度学术
4. 杨戈,廖雨婷. 基于AEDNet的双目立体匹配算法. 华中科技大学学报(自然科学版). 2022(03): 24-28 . 百度学术
5. 马伟,贾兆款,米庆. 融合动态区域检测的自监督视觉里程计方法. 北京工业大学学报. 2021(05): 444-454 . 百度学术
其他类型引用(8)
计量
- 文章访问数: 2075
- HTML全文浏览量: 10
- PDF下载量: 1096
- 被引次数: 13