• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

微博热门话题关联商品品类挖掘

左笑晨, 窦志成, 黄真, 卢淑祺, 文继荣

左笑晨, 窦志成, 黄真, 卢淑祺, 文继荣. 微博热门话题关联商品品类挖掘[J]. 计算机研究与发展, 2019, 56(9): 1927-1938. DOI: 10.7544/issn1000-1239.2019.20180723
引用本文: 左笑晨, 窦志成, 黄真, 卢淑祺, 文继荣. 微博热门话题关联商品品类挖掘[J]. 计算机研究与发展, 2019, 56(9): 1927-1938. DOI: 10.7544/issn1000-1239.2019.20180723
Zuo Xiaochen, Dou Zhicheng, Huang Zhen, Lu Shuqi, Wen Jirong. Product Category Mining Associated with Weibo Hot Topics[J]. Journal of Computer Research and Development, 2019, 56(9): 1927-1938. DOI: 10.7544/issn1000-1239.2019.20180723
Citation: Zuo Xiaochen, Dou Zhicheng, Huang Zhen, Lu Shuqi, Wen Jirong. Product Category Mining Associated with Weibo Hot Topics[J]. Journal of Computer Research and Development, 2019, 56(9): 1927-1938. DOI: 10.7544/issn1000-1239.2019.20180723
左笑晨, 窦志成, 黄真, 卢淑祺, 文继荣. 微博热门话题关联商品品类挖掘[J]. 计算机研究与发展, 2019, 56(9): 1927-1938. CSTR: 32373.14.issn1000-1239.2019.20180723
引用本文: 左笑晨, 窦志成, 黄真, 卢淑祺, 文继荣. 微博热门话题关联商品品类挖掘[J]. 计算机研究与发展, 2019, 56(9): 1927-1938. CSTR: 32373.14.issn1000-1239.2019.20180723
Zuo Xiaochen, Dou Zhicheng, Huang Zhen, Lu Shuqi, Wen Jirong. Product Category Mining Associated with Weibo Hot Topics[J]. Journal of Computer Research and Development, 2019, 56(9): 1927-1938. CSTR: 32373.14.issn1000-1239.2019.20180723
Citation: Zuo Xiaochen, Dou Zhicheng, Huang Zhen, Lu Shuqi, Wen Jirong. Product Category Mining Associated with Weibo Hot Topics[J]. Journal of Computer Research and Development, 2019, 56(9): 1927-1938. CSTR: 32373.14.issn1000-1239.2019.20180723

微博热门话题关联商品品类挖掘

基金项目: 国家重点研发计划项目(2018YFC0830703);国家自然科学基金项目(61872370);中央高校基本科研业务费专项资金(2112018391)
详细信息
  • 中图分类号: TP183

Product Category Mining Associated with Weibo Hot Topics

Funds: This work was supported by the National Key Research and Development Plan of China (2018YFC0830703), the National Natural Science Foundation of China (61872370), and the Fundamental Research Funds for the Central Universities (2112018391).
  • 摘要: 微博是目前人们广泛使用的在线分享和交流的社交媒体平台之一.某些被广泛关注的话题因为在微博中被大量网友转发、评论和搜索而形成微博热门话题,而这些热门话题的广泛传播则可能进一步刺激和推动用户的线下行为.作为其中的典型代表,某些微博热门话题可能会刺激电商平台中和该话题相关的商品的热销.提前挖掘出与微博热门话题相关联的商品品类,可帮助电商平台和卖家提前做好商品运维以及库存的调配,提高用户搜索的购物转化率,带来相应商品销量的提升.提出了一种微博热门话题所关联的潜在购物品类的挖掘方法.首先构建商品知识图谱,然后采用多种深度网络模型对商品品类的关联知识图谱信息与微博话题内容进行文本匹配,识别出每个热门话题和商品品类的关联强度.实验表明,该方法能够有效识别出热门话题和购物品类的关联关系,大部分的微博热门话题都可以关联到电商平台中至少一个商品品类.
    Abstract: Weibo is one of the widely used social media platforms for online sharing and communication. Some widely-received topics have been formed into Weibo hot topics by being forwarded, reviewed, and searched by a large number of users in Weibo. And the widespread dissemination of these hot topics may further stimulate and promote users offline behaviors. As a typical representative of it, some hot topics on Weibo may stimulate sales of products related to the topics under the e-commerce platform. Mining out the relevant product categories of Weibos hot topics in advance can help e-commerce platforms and sellers to do a good job of commodity operation and inventory deployment as well as promote the search conversion rate of users and bring about an increase in the sales of corresponding products. This paper proposes a method of mining potential shopping categories associated with hot topics of Weibo. First, the method builds a product knowledge map, and then uses a variety of in-depth network models to perform textual matching between the information of the associated knowledge of product categories and the content of the Weibo topics. The strength of association of each hot topic and product category is identified. Experiments show that the method can effectively identify the relationship between hot topics and shopping categories, and most of the hot topics of Weibo can be associated with at least one product category in the e-commerce platform.
  • 期刊类型引用(30)

    1. 马超红,郝新丽,孟小峰,张旭康. 机器学习赋能的多维数据查询处理研究综述. 计算机学报. 2025(01): 100-123 . 百度学术
    2. 姜璐璐,高锦涛. 面向机器学习的数据库参数调优技术综述. 计算机工程与应用. 2024(03): 1-16 . 百度学术
    3. 刘帅,乔颖,罗雄飞,赵怡婧,王宏安. 时序数据库关键技术综述. 计算机研究与发展. 2024(03): 614-638 . 本站查看
    4. 赖思超,吴小莹,彭煜玮,彭智勇. 数据库索引调优技术综述. 计算机研究与发展. 2024(04): 929-954 . 本站查看
    5. 朱镕佳,杨宇轩,李振东,陈硕,唐朝阳,唐晓雨. 基于树莓派的智能零售系统设计. 现代信息科技. 2024(19): 189-192+198 . 百度学术
    6. 蔡盼,张少敏,刘沛然,孙路明,李翠平,陈红. 智能数据库学习型索引研究综述. 计算机学报. 2023(01): 51-69 . 百度学术
    7. 曹蓉,鲍亮,崔江涛,李辉,周恒. 数据库系统参数调优方法综述. 计算机研究与发展. 2023(03): 635-653 . 本站查看
    8. 杨荣利,王伟,杨栋,周东阳. 基于两因素模糊时间序列的一次风机指标预测. 电子设计工程. 2023(07): 91-94+99 . 百度学术
    9. 唐楚哲 ,王肇国 ,陈海波 . 机器学习方法赋能系统软件:挑战、实践与展望. 计算机研究与发展. 2023(05): 964-973 . 本站查看
    10. 张政,段怡,高志峰,张欢. 机器学习在手术中液体治疗的应用. 中国数字医学. 2023(07): 81-85 . 百度学术
    11. 杜维柱,张晓华,卢毅,王书渊,沈彦伶. 基于机器学习与数值预报技术的电网短期临近气象预警模型设计. 电子设计工程. 2023(19): 99-103 . 百度学术
    12. 曹卫东,金超. 基于birch聚类的可更新机器学习索引模型. 计算机工程与设计. 2023(11): 3328-3334 . 百度学术
    13. 王鹏. “智慧工会”实现路径. 科技资讯. 2022(02): 10-12 . 百度学术
    14. 张静,农昌瑞,张海兵,张亚周. 基于深度学习的发动机叶片故障检测技术. 航空发动机. 2022(01): 68-75 . 百度学术
    15. 孟小峰,余艳. 在跨学科交叉融合中深发展社会计算与社会智能. 计算机科学. 2022(04): 3-8 . 百度学术
    16. 欧群雍,谭同德,冯学晓. 基于机器学习的软件定义网络数据流子序列匹配算法. 国外电子测量技术. 2022(04): 70-76 . 百度学术
    17. 杜清华,张凯. 一种高效的跨平台工作流优化方法. 计算机工程. 2022(07): 13-21+28 . 百度学术
    18. 姬莉霞,赵耀,马郑祎,赵润哲,张晗. 基于iForest-BiLSTM-Attention的数据库负载预测方法. 郑州大学学报(理学版). 2022(06): 66-73 . 百度学术
    19. 张洲,金培权,谢希科. 学习索引:现状与研究展望. 软件学报. 2021(04): 1129-1150 . 百度学术
    20. 潘璇,徐思涵,蔡祥睿,温延龙,袁晓洁. 基于深度学习的数据库自然语言接口综述. 计算机研究与发展. 2021(09): 1925-1950 . 本站查看
    21. 蒙芳,翟建丽. 学习行为大数据可视化的网络数据库学习仿真. 计算机仿真. 2021(09): 216-220 . 百度学术
    22. 陈镭. 基于机器学习的数据库系统自动调参研究. 软件导刊. 2021(11): 148-151 . 百度学术
    23. 崔栋,温巧燕,张华,王华伟. QML:一种混合空间索引结构. 通信学报. 2021(12): 1-16 . 百度学术
    24. 陶镇威. 基于机器学习的Oracle数据库故障预测技术探索. 现代工业经济和信息化. 2020(02): 70-71 . 百度学术
    25. 桂树强,周实,张家季,耿欣. 基于BIM的轨道交通项目管理框架体系研究与实践. 人民长江. 2020(03): 147-152 . 百度学术
    26. 宋雨萌,谷峪,李芳芳,于戈. 人工智能赋能的查询处理与优化新技术研究综述. 计算机科学与探索. 2020(07): 1081-1103 . 百度学术
    27. 陈珂锐,孟小峰. 机器学习的可解释性. 计算机研究与发展. 2020(09): 1971-1986 . 本站查看
    28. 唐吉深,覃少华. 大型数据库重复记录检测与优化研究. 现代电子技术. 2020(17): 77-81 . 百度学术
    29. 蔡洪浩,罗应华,张荣鑫,杨喻淳. 基于机器学习的智能光电对抗系统. 电子技术与软件工程. 2020(13): 79-80 . 百度学术
    30. 陶姿邑. 基于深度学习的数据库重复记录检测算法. 微型电脑应用. 2020(12): 174-176 . 百度学术

    其他类型引用(33)

计量
  • 文章访问数:  1589
  • HTML全文浏览量:  17
  • PDF下载量:  532
  • 被引次数: 63
出版历程
  • 发布日期:  2019-08-31

目录

    /

    返回文章
    返回